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Abstract. The computation of stress intensity factors (SIFs) in the context of hybrid
explicit-implicit crack descriptions is discussed. The explicit description is realized by
surface meshes and is useful for the crack updates during propagation. The implicit

description by level set functions is obtained from the surface meshes and is used for the
XFEM approximation of displacements and stresses. SIFs are then computed by fitting
the approximated fields. Different fitting approaches based on the hybrid crack description
are investigated in 2D and 3D for applications in hydraulic fracture. An advantage of these
approaches is that they work efficiently even for determining SIFs of curved cracks.

1 INTRODUCTION

Hydraulic fracturing (HF) is a process where a fracture initiates and propagates due
to pressure exerted by the fluid inside the fracture. This process may take place nat-
urally as e.g. in buoyant magma flows or for evolving cracks in dams. But the vast
interest in engineering stems from the fact that artificially induced fracturing stimulates
the flow in hydrocarbon (oil, gas) and geothermal reservoirs improving the production.
Other applications include block-caving processes used in mining, waste disposal, carbon
sequestration, and remediation of contaminated soils.

A number of physical processes are involved in a fluid driven fracture: The rock de-
formation due to the induced fluid pressure on the crack faces, the fluid flow within the
fracture, and the fracture propagation [1]. Thermal and chemical effects are neglected
here, since the focus of this work is fracture creation in 3D. These physical processes are
modeled separately and solved within an iterative coupling. The strongly non-linear and
non-local behavior makes hydraulic fracture modeling a challenging task. The extended
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finite element method (XFEM) is used to deal with discontinuities and singularities which
are present in this problem due to the existence of a (fluid-filled) crack. In XFEM, addi-
tional problem-specific functions (enrichments) are added to the approximation space to
account for non-smooth solutions [3, 10, 8]. Furthermore, a hybrid explicit-implicit crack
description is chosen which is beneficial in simulating hydraulic fracture propagation. An
implicit description by means of level-sets is employed to determine the rock deforma-
tion. In contrast, a triangular surface mesh is used to describe the crack explicitly and
to perform the crack update upon propagation. Another advantage of the explicit crack
description in hydraulic fracture problems is that the fluid flow model is solved on the
surface mesh which can be a potentially curved manifold within the three dimensional
domain [7].

In this work, a particular focus is on the efficient and reliable extraction of stress in-
tensity factors (SIFs). They define the stress and displacement fields in the neighborhood
of a crack tip and are used as crack propagation criteria. There is a large number of liter-
ature on different approaches. We mention energy based methods such as those based on
the J- or interaction integral, see e.g. [14, 13, 11]. Another class of methods studies the
displacement or stress fields at the crack tip, among them the displacement extrapolation
or fitting approaches, see e.g. [6, 9].

The paper is organized as follows: In Section 2, the governing equations for a hydraulic
fracture problem in its basic form are presented. Models are discussed for the solid defor-
mation, fluid flow, and fracture propagation. In Section 3, the XFEM formulation with
an explicit-implicit crack description is described. Different approaches for the reliable
evaluation of stress intensity factors are discussed in Section 4. Numerical results are
presented in Section 5.

2 GOVERNING EQUATIONS

The equations governing hydraulic fracture must account for the three main physical
phenomena of fluid flow, solid deformation, and fracture propagation. A strongly coupled
partitioned approach is used for the solution of the coupled problem.

2.1 Rock deformation

The rock is modeled as a homogenous, isotropic, linear elastic solid. The material
parameters quantifying the deformation process correspond to the Young’s modulus E,
Poisson’s ratio ν, and rock toughness kIC . The equations for the equilibrium of forces are
given by:

∇ · σ + f = 0 in Ω, u = u0 on Γd, σ · n = t̂n on Γn, p · n = t̂I on ΓI (1)

where u denotes the displacement defined on the domain Ω. Far field stresses and the
fluid pressure p are imposed as Neumann boundary conditions at the outer boundary Γn

and on the interface ΓI , respectively, where t̂n and t̂I denote the traction. The fracture
aperture w has to be interpolated from the displacement field.
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2.2 Fluid flow

The model for the fracturing fluid is derived from Poiseuille equation as laminar flow
between two parallel plates. It is valid for fractures with a crack length much larger than
the width. With the assumption of an incompressible, Newtonian fluid, the Reynolds
(lubrication) equation [2] is given by:

∂w

∂t
−∇ · q + ql = Q0δ(x) with q = −

w3

12µ
∇p (2)

and describes the conservation of the fluid mass with the dynamic viscosity µ. The fluid is
injected into the fracture at a constant rate Q0 and is incorporated as a point source into
the model since the borehole is not considered in this study. Furthermore, the fracture is
propagating in an impermeable solid, and thus, the leak-off term ql is negligible. Finally,
the fracture volume V is equated to the volume of injected fluid Vf = Q0t and the amount
lost to the surrounding rock-mass by the global volume balance condition:

V =

∫

Ω

w dΩ = Vf −

∫ t

0

∫

Ω

ql dΩdτ. (3)

2.3 Fracture propagation

In this work, a quasi-static crack growth is assumed and the crack propagates contin-
uously under mobile equilibrium. In general, a number of various propagation criteria
could be applied to this problem. These include local conditions based on stress inten-
sity factors or the stress state in the vicinity of the crack front as well as conditions
derived from global energy considerations. In this study, the focus is on extracting stress
intensity factors by fitting displacements or stresses in the near-tip region. In terms of
numerical implementation, only one node at the crack front has to fulfill the critical con-
dition kI = kIC , which states that the stress intensity factor kI has to be equal to the
fracture toughness kIC of the material [12]. The direction of crack propagation is then
calculated from the maximum circumferential stress criterion.

3 XFEM WITH HYBRID EXPLICIT-IMPLICIT CRACK DESCRIPTION

The extended finite element method (XFEM) is a local partition of unity (PU) based
method, which accounts for a priori knowledge about the solution characteristics by locally
incorporating enrichment functions into the finite element approximation space. Thereby,
fields that involve jumps, kinks, singularities, and other non-smooth features within ele-
ments can be approximated accurately [3, 10, 8]. In linear elastic fracture mechanics, the
standard XFEM formulation for the displacement approximation is:

uh(x) =
∑

i∈I

N i ui

︸ ︷︷ ︸

continuous

+
∑

j∈Istep

N ⋆
j ·Ψstep aj +

∑

k∈Itip

N ⋆
k ·

(
4∑

m=1

Ψm
tip(r, θ) b

m
k

)

︸ ︷︷ ︸

discontinuous

(4)
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The classical FEM-approximation is described by the continuous part of the equation with
continuous shape functions N i(x) and nodal unknowns ui. Discontinuous characteristics
across the crack path in the displacement field are accounted for by incorporating locally
step or Heaviside functions Ψstep and additional nodal unknowns aj at nodes within the
set Istep. Nodes within I tip are enriched with a set of four enrichment functions Ψm

tip(r, θ)
which capture the square-root singularity according to the linear elastic fracture mechanics
(LEFM) theory. Additional degrees of freedom bmk are introduced into the approximation
locally within the enriched region.

The strong fluid-solid coupling in hydraulic fracture problems that is mainly confined to
a small region near the crack tip [5] influences the choice of the tip enrichment functions.
For a fluid-filled crack propagating in an impermeable rock, two limiting energy dissipation
processes can by identified: the work done by the viscous fluid in extending a fracture and
the energy required to create new crack surfaces. In the toughness dominated propagation
regime, the dissipation energy for fracture creation is dominant and the effect of the crack
tip process on the total fracture is described by the inverse square root singularity of
LEFM [4].

3.1 Explicit-implicit interface description

An explicit crack description simplifies the crack update during the propagation. On
the other hand, an implicit crack description by the level-set method complements the
XFEM extremely well and is a standard in XFEM ever since. The aim is to combine the
advantages of each description, see [7] for further details. Three level-set functions are
defined which allow not only for determining the crack location but enable the definition
of a local coordinate system at the crack front, see Figure 1.

• Φ1(x) is the (un-signed) distance function to the crack path/surface. That is, the
level-set value at position x is the shortest distance to the crack path/surface.

• Φ2(x) is the (un-signed) distance function to the crack tip(s)/front. That is, the
level-set value at position x is the shortest distance to the crack tip(s)/front.

• Φ3(x) is a signed distance function to crack path/surface that is extended over
the whole domain. The sign is based on the direction of the normal vector of the
segment that contains the nearest point.

(a) Φ1(x) (b) Φ2(x) (c) Φ3(x)

Figure 1: The level-set functions are illustrated for a 2D case [7].
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(a) The coordinate system
(a, b)

(b) The coordinate system
(r, θ)

Figure 2: Coordinate systems implied by the three level-set functions [7].

These level-set functions imply coordinate systems, which are used to define the regions
to be enriched and to evaluate the enrichment functions. See Figure 2 for two different
particularly useful coordinate systems. It is a major advantage of the described explicit-
implicit crack description that the extension to 3D is truely straightforward as shown in
[7]. In the next section, it is discussed how to extract stress intensity factors based on the
coordinate system (a, b).

4 COMPUTING STRESS INTENSITY FACTORS

The state at the crack tip is completely described by a linear combination of the crack
modes plus a rigid body motion. The factors of this linear combination are called SIFs.
As mentioned before, there are local and global approaches for determing SIFs. Here, the
focus is on fitting SIFs based on displacements or stresses.

4.1 The approximated state

The approximated state in terms of displacements, stresses, and strains is given as a
result of an XFEM simulation (or by a classical FEM simulation on a suitable mesh). The
crack is closed in the undeformed configuration and given by an explicit line or surface
mesh in 2D or 3D, respectively. Based on this explicit description, we compute two scalar
functions a(x) and b(x) from the three level set functions as mentioned above.

In 2D, the two functions a and b define a coordinate system with base vectors ea and
eb defined as

ea = J−1

[
0
1

]

, eb = J−1

[
1
0

]

, with J =

[
a,x a,y
b,x b,y

]

. (5)

These base vectors are shown in Figure 3(a). Only for planar cracks, they have unit-length
(measured in the x-coordinate system) and are orthogonal.

After the deformation of the body (with a potential opening of the crack) the base
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(a) Undeformed configuration. (b) Deformed configuration.

Figure 3: The coordinate systems defined by the two scalar functions a and b in the (a) undeformed
and (b) deformed configuration. The vectors ea and eb are shown examplarily at some points.

vectors are transformed by means of the deformation gradient F as

e⋆
a = F · ea, e

⋆
b = F · eb, with F =

[
1 + u,x u,y

v,x 1 + v,y

]

. (6)

These mapped base vectors are shown in Figure 3(b).
In 3D, the two functions a and b define the three base vectors ea, eb, and ec. Therefore,

we first compute ∇c = ∇a×∇b, so there is no need to explicitly define a third function
c(x). Then,

ea = J−1





1
0
0



 , eb = J−1





0
1
0



 , ec = J−1





0
0
1



 , with J =





a,x a,y a,z
b,x b,y b,z
c,x c,y c,z



 .

The mapping of the base vectors to the deformed configuration is achieved by means of
the 3D deformation gradient following Eq. (6). See Figure 4 for a visualization.

It is noted that the mapped base vectors will later only be needed at the crack tip and
along the crack path but not in the bulk.

4.2 Reference states

In order to fit the SIFs, reference states for the individual crack modes are needed.
Apparently, the undeformed configuration does not involve the displacements that may
occur even in the absence of a crack opening (composed by the crack modes). The crack
tip typically experiences a translation and rotation in addition to the opening of the crack
modes. If we wish to express the displacement field at the crack tip solely in terms of the
crack modes, i.e.

u(x) = uI(x) · kI + uII(x) · kII + uIII(x) · kIII , (7)
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(a) (b)

Figure 4: (a) For a selected point x⋆, the corresponding isosurfaces where a = a(x⋆) and b = b(x⋆) are
shown. Furthermore, the resulting base vectors are depicted at that point. (b) Other base vectors for
selected points.

we have to make sure that the movement of the crack tip that is not related to the crack
opening is filtered out properly. Therefore, the reference state is composed by a virtual,
deformed configuration without any crack opening. The reference state is associated
with a coordinate system (a′, b′) in which the crack modes (with kI = kII = kIII = 1,
respectively) are evaluated and then used in the fitting procedure described below.

Three different virtual configurations are considered here:

• Reference state 1 refers to a coordinate system (a′, b′) at the crack tip which is
defined through the crack center line of the open crack. The position of this line is
composed by the midpoints between any two points on the crack surface that have
been adjacent in the undeformed configuration. Then, three level set functions are
computed with respect to this deformed (yet closed) crack surface and the scalar
functions a′ and b′ are computed accordingly.

• Reference state 2 is a rigid body motion of the coordinate system (a, b) (and hence,
the original closed crack) solely defined by the crack tip movement. The coordinate
system is curved when the crack is already curved in the undeformed configuration.

• Reference state 3 refers to an orthonormal coordinate system (a′, b′) based on the
tangential deformed crack tip direction e⋆

a. The associated virtual crack path would
be a straight line where the angle is solely determined by the crack tip rotation.

These reference states, i.e., the related coordinate systems are shown in Figure 5(a)
to (c). The black lines are the isolines of the scalar functions a and b and indicate the
coordinate system. The red line is the associated virtual crack path where b = 0 and a < 0.
The dashed black line is the approximated crack opening in the deformed configuration.

Figure 6 shows a pure mode I and II opening with kI = kII = 1, evaluated in the
coordinate system (a′, b′). The displacements u′ and v′ are obtained in the directions of
e′

a and e′

b (the latter are defined as in Eq. (5) but with the scalar functions a′ and b′).
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(a) Reference state 1. (b) Reference state 2. (c) Reference state 3.

Figure 5: The coordinate systems of different reference states. The dashed black line is the open crack
path. The red line is the crack path according to the reference state.

For the relation between displacements in the (x, y)- and (a′, b′)-coordinate system holds

[
u
v

]

= u′
· e′

a + v′ · e′

b. (8)

For any evaluation point x in the fitting procedures described below, the following
steps are performed: (1) The scalar functions a(x) and b(x) are evaluated. (2) The point
x⋆ = x + uh(x) is computed. (3) The point x′ where a′(x′) = a(x) and b′(x′) = b(x) is
determined. This is simple for reference states 2 and 3, but rather cumbersome for state
1. The basis vectors e′

a and e′

b at that point are computed. (4) The displacements u′

I

and u′

II according to a pure mode I and II crack (with kI = kII = 1) are evaluated. (5)

The displacement
(
uh
)
′

between x′ and x⋆ is computed in the direction of e′

a and e′

b. For
brevity, the prodecure is described for displacements, but works analogously for stress
components. The extension to 3D is straightforward.

(a) kI = 1, planar (b) kI = 1, curved (c) kII = 1, planar (d) kII = 1, curved

Figure 6: Crack modes in the reference states, (a) and (c) for a planar crack path, (b) and (d) for a
curved crack path. The black lines indicate the reference coordinate system (a′, b′).

4.3 The fitting procedure

The aim is to determine the unknown SIFs which are two unknowns in 2D and three
in 3D. The answer could be provided by only one evaluation point and comparing the
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reference and approximated states. However, it is benefitial to consider a larger number
of points in the vicinity of the crack tip. Then, the SIFs are determined through fitting.
We distinguish between fitting displacements and stresses.

4.3.1 Fitting quantities

The fitting may be realized in a weak sense or through an overdetermined system. This
is exemplarily shown for the fit of the displacement component u′ in e′

a-direction:

Alternative 1: The following weak form is evaluated in the crack tip zone

∫ [
u′

I · u
′

I u′

I · u
′

II

u′

II · u
′

I u′

II · u
′

II

]

dΩ ·

[
kI
kII

]

=

∫ [
u′

I ·
(
uh
)
′

u′

II ·
(
uh
)
′

]

dΩ (9)

Alternative 2: The equation u′

I · kI + u′

II · kII =
(
uh
)
′

is evaluated at n > 2 points

yielding an overdetermined system of equations A · [kI , kII ]
T = b, where A is an (n× 2)-

matrix. Then, the system is solved in a least squares sense, i.e.

ATA ·

[
kI
kII

]

= ATb (10)

It appears more natural to determine kI by fitting the displacement component in e′

b-

direction, i.e. through v′I , v
′

II , and
(
vh
)
′

because this is the more pronounced component
for the opening mode. Accordingly, kII (shearing mode) should be fitted from u′

I , u
′

II ,

and
(
uh
)
′

and kIII (tearing mode) from w′

I , w
′

II , and
(
wh
)
′

.
Finally, it is noted that instead of fitting displacements one may also use stresses.

Then, kI is determined through σ′

bb, kII through σ′

aa, and kIII through σ′

cc.

4.3.2 Fitting locations

For the two fitting alternatives discussed above, it remains to specify where evaluation
points are considered. Different approaches are investigated:

Fitting the crack opening displacements Evaluation points are put on the crack
surface, i.e. on the two sides of the zero-iso-level. For each pair of adjacent points, the
displacement components with respect to the averaged crack center line are determined.
This gives the components for opening, shearing and tearing. Together with the distance
to the crack front, the SIFs can be determined pointwise and averaged if desired.

Fitting the displacements near the crack tip zone A radius around the crack tip
defines the domain Ω where all integration points contribute to the weak form (9).

Fitting the stresses near the crack tip zone When fitting stresses, an inner and
outer radius are specified and the integral (9) is evaluated on a torus around the crack
tip. This avoids the consideration of the nearly singular stresses near the crack tip.
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Fitting the displacements on circles Instead of evaluating an integral in the bulk,
one may also define a circle around the crack tip and place evaluation points on the circle.
Then, we solve (10) in order to fit displacements.

Fitting the stresses on circles Again, evaluation points on a circle with a prescribed
radius are placed around the crack tip. Then, the SIFs are obtained by fitting the stress
compenent σ′

rθ in a polar coordinate system. The polar coordinates are easily obtained
from the (a′, b′)-coordinate system. The advantage of this approach is that only an arc of
the circle in front of the crack tip can be considered. In that region, the three reference
states coincide.

5 NUMERICAL RESULTS

For the comparison of the different alternatives for fitting the SIFs, a well-known test
case in hydraulic fracturing is chosen where the exact solution is known. In 2D, a planar
crack is considered in an infinite domain. For the discrete setup, the ratio of the crack
and the boundary of the domain is 1:40. For symmetry reasons, only half of the domain
is considered. A sketch of the discretized domain and a detailed region along the crack
path are shown in Figure 7. Results are obtained with both classical FEM simulations
on conforming meshes and XFEM simulations with the described hybrid explicit-implicit
crack description.
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Figure 7: The test case is 2D.

The crack opening and the resulting SIFs are known analytically for arbitrary pressure
profiles along the straight crack. Here, we choose a constant, linear and quadratic pressure
profile. The resulting crack opening profiles and SIFs are given in Figure 8.

Convergence results for different fitting approaches are seen in Figure 9. Method 1
is the fitting of displacements is the bulk region at the crack tip for different radii, see
Figure 9(a) to (c). The stress fit in the near-tip region is called method 2, see Figure 9(d)
to (f). Finally, results are shown for method 3, where stresses on an arc near the crack
tip are shown for different radii, see Figure 9(g) to (i).

In 3D, the fluid filled penny shape crack is considered in an infinite domain. Again,
different pressure profiles and fitting approaches are investigated. The results are discussed
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(a) constant pressure, kI =
0.1982
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(b) linear pressure, kII =
0.1262
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(c) quadratic pressure,
kIII = 0.0991

Figure 8: Crack opening profiles and SIFs for different pressures.

in the presentation and are to be published in a forth-coming journal publication.

REFERENCES

[1] J. Adachi, E. Siebrits, A. Peirce, and J. Desroches. Computer simulation of hydraulic
fractures. Int. J. Rock Mech. Min. Sci., 44(5):739 – 757, 2007.

[2] G. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.

[3] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal
remeshing. IJNME, 45:601 – 620, 1999.

[4] A. Bunger, E. Detournay, D. Garagash, and A. Peirce. Numerical simulation of
hydraulic fracturing in the viscosity dominated regime. In SPE Hydraulic Fracturing

Technology Conference, 2007.

[5] E. Detournay. Fluid and solid singularities at the tip of a fluid-driven fracture. In
D. Durban and J. Pearson, editors, IUTAM Symposium on non-linear singularities

in deformation and flow, Proceedings, pages 27–42, 1999.

[6] C. Duarte, O. Hamzeh, T. Liszka, and W. Tworzydlo. A generalized finite element
method for the simulation of three-dimensional dynamic crack propagation. Engi-

neering Fracture Mechanics, 72:1635 – 1663, 2005.

[7] T.-P. Fries and M. Baydoun. Crack propagation with the extended finite element
method and a hybrid explicit–implicit crack description. Int. J. Num. Meth. Engng.,
89(12):1527–1558, 2012.

[8] T.-P. Fries and T. Belytschko. The extended/generalized finite element method: An
overview of the method and its applications. Int. J. Num. Meth. Engng., 84(3):253–
304, 2010.

[9] A. Ingraffea and C. Manu. Stress-intensity factor computation in three dimensions
with quarter-point elements. Numerical Methods in Engineering, 15:1427 – 1445,
1980.

[10] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth
without remeshing. IJNME, 46:131 – 150, 1999.

[11] J. Pereira and C. Duarte. The contour integral method for loaded cracks. Numerical

Methods in Biomedical Engineering, 22:421 – 432, 2006.

11



T.P. Fries, M. Schätzer, N. Weber

10
−3

10
−2

10
−1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Radius of fitting zone

C
om

pu
te

d 
S

IF
 k

1

Displacement fit in crack−tip zone, pressure case 1

 

 

10
20
40
80
160

(a) constant pressure

10
−3

10
−2

10
−1

0

0.02

0.04

0.06

0.08

0.1

0.12

Radius of fitting zone

C
om

pu
te

d 
S

IF
 k

1

Displacement fit in crack−tip zone, pressure case 2

 

 

10
20
40
80
160

(b) linear pressure
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(c) quadratic pressure
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(d) constant pressure
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(e) linear pressure
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(f) quadratic pressure
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(g) constant pressure
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(h) linear pressure
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(i) quadratic pressure

Figure 9: Convergence of the fitting approaches in the near-tip region with different radii.
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