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Abstract. This work concerns a construction of surrogate models for a specific aero-
dynamic data base. This data base is generally available from wind tunnel testing or
from CFD aerodynamic simulations and contains aerodynamic coefficients for different
flight conditions and configurations (such as Mach number, angle-of-attack, vehicle con-
figuration angle) encountered over different space vehicles mission. The main peculiarity
of aerodynamic data base is a specific design of experiment which is a union of grids of
low and high fidelity data with considerably different sizes. Universal algorithms can’t
approximate accurately such significantly non-uniform data. In this work a fast and ac-
curate algorithm was developed which takes into account different fidelity of the data and
special design of experiments.
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1 Introduction

Airbus Defence and Space, in the frame of the development of various spacecraft ve-
hicles, is producing aerodynamic models. Different kinds of data are used to build these
models:

• Experimental results derived from WTT campaigns, with a high level of confidence.

• Numerical data resulting from CFD simulations, with a lower level of confidence,
which depends also on the used numerical method (Euler / RANS, flow regime, etc.)

CFD computations and even more WT campaigns are very costly and it is sometimes
not conceivable to perform all flight configurations (surfaces deflections, e.g.) on the
whole flight range. An inter-extrapolation process is then necessary to build a complete
aerodynamic model. With a lot of input parameters (Mach, Angle of Attack, Angle of
Sideslip, surfaces deflections, etc.), this process can be quite time consuming and may
lead to inconsistent results with a classical approach. Furthermore available data can
constitute anisotropic grids which lead to severely harden the inter-extrapolation process.

The objective is therefore to build a consistent model taking into account all available
data, with a fast and rationale method.

Airbus Defence and Space is thus interested by the generation of surrogate models from
given spacecraft aerodynamic database. The AErodynamic DataBase (AEDB) provides
the aerodynamic coefficients of the vehicle for the different flight conditions and vehicle
configurations (notably aerodynamic control surfaces deflections) encountered over the
whole mission domain. This type of database is typically included within global vehicle
behaviour models. These behaviour models are then used as input to various system
studies, such as trajectory and performance analysis, or handling qualities and flight
control system analysis.

From a practical standpoint, the AEDB generation process raises the following two
fold challenges:

• Multidimensional interpolation/extrapolation: how to cover a prescribed full flight
envelope defined in the multidimensional space of flight conditions/vehicle configu-
rations, on the basis of scattered discretized input data?

• Multiple data combination: how to build a consistent and homogeneous aerody-
namic database on the basis of multiple input data sets with different levels of
fidelity?

The final goal is to obtain a surrogate model that can automatically interpolate multi-
dimensional data, union of anisotropic grids with non-uniform data and different level of
fidelity, and therefore to build a consistent and homogeneous aerodynamic model that can
cover all intermediate points within the flight envelope. Last but not least, the surrogate
model shall ensure that the exhibited outputs always remain within realistic limits (i.e.
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remain meaningful from aerodynamics behaviour standpoint), whatever the input vector
content.

2 SURROGATE MODELLING

A surrogate modelling is one of the approaches to solving problems of engineering design
actively developing in recent years [1]. In this approach a complex physical phenomenon
is described by a simplified (surrogate) model constructed using data mining techniques
and a set of examples representing results of a detailed physical modelling and/or real
experiments. The problem of approximation of a multidimensional function using a finite
set of pairs “point” – “value of the function at this point” is one of the main problems to
be solved during construction of the surrogate model.

In this section we will give mathematical statement of approximation and data fusion
problems.

2.1 Approximation problem

Let us consider continuous function g : D ∈ Rd → R, where D is a compact set. Let
us refer to a set of points Σ and a set of function values at points from the set Σ as a
training set S

S = {xi ∈ Σ, yi = g(xi)}Ni=1 = {Σ, g(Σ)}.
Set of input points Σ we will call a design of experiments (DoE).

In this paper we consider approximation problem in the following statement.

Problem 1. Given the training set S, class of functions F and penalty function Pλ : F →
R find such f ∗ ∈ F that minimizes the error function R(f,Σ, g(Σ))

f ∗ = arg min
f∈F

R(f,Σ, g(Σ)) = arg min
f∈F

∑
x∈Σ

(g(x)− f(x))2 + Pλ(f) (1)

Introduced penalty function allows to control variability of the approximation model.
For example, it can be a norm of the second derivatives of f (see, for instance, smoothing
splines [2]) or norm of f in some Hilbert space (kernel ridge regression [3]).

2.2 Data fusion

The data sets considered in this work contains output values obtained from two different
sources (for example experimental measurements and CFD simulations). Both sources
model the same physical process. However one of them (experimental measurements) is
supposed to be more accurate than another (CFD simulations). We will refer to the more
accurate one as high fidelity (HF) model and denote it by gh(x). We will refer to the
second source as low fidelity (LF) model and denote it by gl(x).

So the training set S is split into 2 parts

• high fidelity sample Sh = {xhi , yhi = gh(x
h
i )} = {Σh, gh(Σh)} and
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• low fidelity sample Sl = {xli, yli = gl(x
l
i)} = {Σl, gl(Σl)}.

A data fusion task is given high fidelity and low fidelity data sets Sh and Sl construct
an approximation f̂(x) of gh(x).

Usage of LF points allows to build more accurate surrogate models as they contain
information about the physical model in regions which don’t have HF points. To measure
how accurate high or low fidelity value is we introduce confidence levels of the sample
wh (for HF points) and wl (for LF points), wh + wl = 1, wh, wl > 0. They express our
confidence about the accuracy of the source that produced output value at given point
and can be thought of as a probability of being the true value of the physical characteristic
at given point. For experimental measurements the weights should be greater than the
weights for CFD simulations since they are more accurate.

2.3 Design of experiments

One of the peculiarities of the problem considered in this work is a specific DoE. First
of all, let us introduce some definitions. Let us refer to sets of points σk = {xkik ∈ Dk}nk

ik=1,

Dk ⊂ Rdk , k = 1, K as factors. A set of points Σfull is referred to as a factorial design of
experiments if it is a Cartesian product of factors

Σfull =σ1 × σ2 × · · · × σk =

{[x1
i1
, . . . ,xKiK ], {ik = 1, . . . , nk}Kk=1}.

(2)

The elements of Σfull are vectors of a dimension d =
∑K

i=1 di and the sample size is a

product of sizes of all factors N =
∏K

i=1 ni. If all the factors are one-dimensional Σfull is
a multidimensional grid. A subset of Σ ⊂ Σfull we will call an incomplete factorial design
of experiments.

The DoE considered in this paper is a union of several anisotropic grids (here anisotropy
means significantly different sizes of the grids), see Figure 1. It is an incomplete factorial
DoE.

Such designs are rather complicated for approximation methods which don’t use any
knowledge about the data structure. Universal approximation algorithms (like Gaussian
Process regression [5]) explicitly or implicitly assume that the DoE is rather uniform (there
are no big holes in the DoE). Union of anisotropic grids is sufficiently a non-uniform DoE
and this fact is the main reason to use special approximation technique. If we have big
regions without training data then we have to control model smoothness in order to avoid
oscillations and overshoots. Gaussian Process regression has some kind of smoothness
control (not direct!) but it works only in the neighborhood of the training data (see
Figure 2). To solve this problem we use a specific approximation algorithm described in
the following section.
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Figure 1: Design of experiments

3 TENSOR PRODUCT OF APPROXIMATIONS

The approximation f̂(x) will be modeled by the linear expansion in a dictionary of
parametric functions. The algorithm consists of the following steps:

1. Choose class of functions F .

2. Choose penalty function Pλ.

3. Solve optimization problem (1).

The dictionary of functions is chosen in the following way. Let ∆k = {ψkjk}
pk
jk=1 be

a dictionary of functions defined on Dk (for all k = 1, K). The dictionary of functions
defined on D1 ×D2 × · · · ×DK is formed as tensor product of functions from ∆k

∆tensor = {ψ1
j1
⊗ ψ2

j2
⊗ · · · ⊗ ψKjK , {jk = 1, pk}Kk=1}.

The class of functions F will be a linear expansion in a dictionary ∆tensor. It means that
the model f(x) ∈ F can be written as f(x) =

∑
j1,...,jK

αj1,j2,...,jK ∗ψj1(x1) ∗ψj2(x2) ∗ · · · ∗
ψjK (xK).

For the penalty function we will use variability of a function along some factor (or group
of factors). For example, to penalize the variability along the first factor the following
penalty function is used

Pλ(f) =

∥∥∥∥( ∂2f

(∂x1)2

)∥∥∥∥2

=
∑

i1,...,iK

( ∑
j1,...,jK

αj1,j2,...,jK ∗
∂ψ1

j1

∂x1
(x1

i1
) ∗ ψ2

j2
(x2

i2
) ∗ . . . , ψKjK (xKiK )

)2

.
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Figure 2: Example of degenerate Gaussian Process regression model.

Also note that the chosen penalty function is quadratic over decomposition coefficients
A = {αj1,j2,...jK , {jk = 1, pk}Kk=1}}. This penalty function can be generalized to control
variability over several factors, for the details see [4].

Here we describe a simplified version of the last step since it is important for the data
fusion problem. Due to the choice of penalty function the original optimization problem
(1) can be reduced to minimization of the following function:

R̃(A) = (Ỹ − Ψ̃A)TW (Ỹ − Ψ̃A) + ATΩA.

where

• Ỹ is an extended vector of training values and Ψ̃ is an extended matrix of regressors
(see details in [4]);

• Ω is a square penalty matrix (see details in [4]);

• W is a diagonal weighting matrix (sizes are N ∗N):

Wi,i =

{
1, if xi ∈ Σ

0, if xi ∈ Σfull\Σ.

Optimization problem min R̃(A) can be solved in a very efficient way using special struc-
ture of the training set and tensor calculus [4].
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4 DATA FUSION BASED ON TENSOR PRODUCT OF APPROXIMA-
TIONS

In this section we will describe 3 different approaches to data fusion problem. All of
them are based on tensor product of approximations on incomplete factorial DoE (iTA).
We suppose that both HF points (Σh) and LF points (Σl) are incomplete factorial DoE.

4.1 Merged solution

Main idea of this approach is simple: we should merge CFD (low fidelity) and experi-
mental (high fidelity) data into one sample using the following rule.

1. Merge sets of training points Σh and Σl into one set Σ = Σh ∪ Σl;

2. Create corresponding set of the training values Y :

• yi = yli if xi ∈ Σl and xi 6∈ Σh (only low fidelity value is known), set Wi,i = wl;

• yi = yhi if xi 6∈ Σl and xi ∈ Σh (only low fidelity value is known), set Wi,i = wh;

• yi = wly
l
i + why

h
i (where wh = 0.8 and wl = 0.2 are given confidence levels)

if xi ∈ Σl and xi ∈ Σh (both high and low fidelity values are known), set
Wi,i = wl + wh;

3. Construct iTA model using created sample and weighting matrix W .

This approach intends to fit LF model in regions where only LF values are given, HF
model in regions with only HF values and weighted sum of LF and HF values in other
regions.

4.2 Fused solution

This approach based on another idea. Let us approximate bias of the low fidelity
function gl(x) with respect to the high fidelity gh(x). Then we can use this approximation
to estimate values of the high fidelity function gh(x) in points where only low fidelity value
is known.

1. Find set of points Σboth for which xi ∈ Σl and xi ∈ Σh (both high and low fidelity
values are known).

2. Calculate Ydiff = {yh(x)− yl(x)} for all points x from the set Σboth;

3. Construct model fdiff using {Σboth, Ydiff} as training sample;

4. Find set of points Σ̃l = {x,x ∈ Σl,x 6∈ Σh} (only low fidelity value is known);

5. Estimate high fidelity values in points from the set Σ̃l using constructed model fdiff :

Yest = fdiff (Σ̃l) + Yl(Σ̃l).
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Figure 3: Local fidelity of CFD data.

6. Add {Σ̃l, Yest} to high fidelity sample as new data.

7. Construct Fused model using extended training sample {Σ̃l ∪ Σh, Yest ∪ Yh}.

4.3 Local fidelity solution

In previously described approaches we used the global fidelity, i.e. the confidence
level doesn’t depend on the location of the point and its neighborhood. However, if
region contains lots of high fidelity experimental points then in this region CFD points
should be treated as low fidelity (and can be even discarded), whereas in region without
experimental points CFD points become high fidelity data. Therefore we come to the
idea of local fidelity.

The difference between local and global approaches can be roughly explained using
simplified data (see Figure 4). The global fidelity model try to catch the difference between
HF and LF and use it to estimate HF values in [0.8, 1]. The local fidelity model doesn’t
trust HF data in [0.8, 1] (because there is no points nearby) and prefers to use LF data
instead.

The concept of local fidelity can be implemented as follows. For each point x ∈ Σboth

we estimate the output value ỹ as

ỹ(x) =
w̃h(x)

w̃h(x) + w̃l(x)
gh(x) +

w̃l(x)

w̃h(x) + w̃l(x)
gl(x), (3)
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Figure 4: Local fidelity vs. Global fidelity.

where weights w̃h, w̃l are calculated according to the idea of local fidelity:

w̃k(x) =
∑
x′∈Σk

exp

(
−||x− x′||2

σ2

)
, k = h or k = l.

If there are a lot of HF points in the neighborhood of point x then the value of w̃h(x) will
be large, if there are few points in the neighborhood then w̃h(x) will be small. The same
holds for wl(x). Therefore, in regions with large amount of HF points and low amount of
LF points the value ỹ(x) will be close to gh(x) and vice versa.

Local fidelity data fusion algorithm:

1. Build f̂h approximation of gh using HF points.

2. Build f̂l approximation of gl using LF points.

3. For ∀x ∈ Σh ∪ Σl calculate HF and LF weights w̃h and w̃l.

4. Using equation 3 calculate Yest for the set Σh ∪ Σl.

5. Using {Σh ∪ Σl, Yest} as a training set construct iTA model.

4.4 Comparison of proposed solutions

Now let us compare three proposed solutions on real data. Training sample has the
following characteristics:
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Figure 5: One-dimensional slice of constructed model.

• Input dimension: 3

• Output dimension: 3

• High fidelity sample size: 1846

• Low fidelity sample size: 180

Merged solution and Fused solution have some disadvantages. Figure 5 illustrates
one-dimensional slice of approximations. As it can be seen Merged solution has small
singularities at points where both high and low fidelity values are given.

The Fused solution is based on the difference between high fidelity model and low
fidelity model. The difference model is built using points for which both CFD and ex-
perimental values are known. Such points dont cover the whole domain, so we have to
extrapolate in other regions. Such procedure is rather inaccurate and introduces large
uncertainties. Particularly, approximation can take values of the same magnitude as the
HF and LF values. Such behavior is not reasonable from physical point of view. Figure
6 illustrates this problem.

Figure 7 depicts two-dimensional slices of obtained surrogate models. In this figure
blue points denote HF points which were removed from the training sample in order to
see the behavior of approximation in regions which have HF points but don’t have LF
points. Local fidelity surrogate model provides smooth approximation without overshoots
and oscillations. One can see that merged and fused solutions can change their behavior
significantly in such regions which leads to overshoots.
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Figure 6: Problem with fused solution. Usual view (left) and enlarged view (right) of
approximation of difference between HF and LF models. Approximation takes large
values in region without training points.

Thus, local fidelity solution doesn’t have both mentioned disadvantages of merged and
fused solutions and provides rather smooth and reasonable approximation. However, in
some cases local fidelity solution can be less “physical” than fused solution. Local fidelity
model interpolates the HF data in regions where only HF data is available while there
is difference between LF and HF models and the both values gl(x) and gh(x) should be
used and taken with corresponding confidence levels. So the fused solution can be more
suited for such situations from physical point of view.

5 CONCLUSIONS

In this work we considered the data fusion problem where the design of experiments
is a union of several anisotropic grids of HF and LF points. Several approaches (merged
solution, fused solution, local fidelity solution) based on iTA approximation technique has
been developed to solve this problem. The iTA technique takes into account structure
of the data set and thus builds accurate approximations in a very efficient (in sense of
computational complexity) way. The approach based on idea of local fidelity can provide
good approximations but its behavior is not always physical. The fused approach is the
most promising solution for now as it is able to follow physics of the process. The merged
approach is mainly used for benchmarking purposes. The work on the both promising
approaches (local fidelity solution and fused solution) is not finished. Further development
should be put on removing discussed disadvantages.
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(a) Merged solution (b) Fused solution

(c) Local fidelity solution

Figure 7: 2D-slices of approximations
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