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Abstract.  The optimized design of a large variety of rubber-made engineering applications (e.g. 

tires, dampers, rubber seals) needs the full solution of many mechanical problems involving 

viscoelasticity. Particularly interesting is the sliding contact mechanics of rough viscoelastic 

solids, where, in addition to the convoluted nature of the material response, the surface 

roughness boosts the problem complexity. In this paper, by employing the adaptive non uniform 

mesh developed by the authors in [1,2] and the mathematical formulation proposed in [3], we 

focus on the main aspects of this issue, i.e. the viscoelastic dissipative phenomena and the 

viscoelastic induced anisotropy. 

 

1 INTRODUCTION 

Engineering polymers are widely being assumed as smart engineering solutions thanks to the 

interesting combination of good mechanical and chemical properties, in terms of resilience, 

elasticity, durability, with an extremely low density. However, design of rubber and rubber-

based components need a really careful examination of their mechanical properties. Indeed, 

viscoelastic dissipation is the key feature marking their complicated mechanical behavior since 

it is strictly related to the choice of suitable rubber-based materials for each application. Tires, 

V-belts, rollers, seals are only examples of components where damping effects have to be 

accounted for as the most important target parameters. Therefore, a large variety of scientific 

contributions have been dedicated to this theme [3-14]. 

    Here, we focus our attention on the sliding steady-state contact of rigid rough surface over a 

viscoelastic half-space. Basically, in this case, the material is marked by two important 

phenomena, both induced by viscoelasticity: on one side, bulk deformation produces a 

viscoelastic dissipation; on the other, contact solution shows a marked anisotropy. In the paper, 

we explore these issues in detail. 

    In the past, some analytical investigations have been carried out for the case of 2D smooth 

contacts by Hunter [4] and, in parallel, by Goriacheva [5]; furthermore, by adopting the strong 

approximation of a narrow shape punch, Kalker has analyzed the 3D case [6]. However, these 

models are affected by significant drawbacks since, beside the approximations related to punch 

shape, they are only capable of handling ideal viscoelastic materials with one relaxation time.  

However, as widely shown experimentally (see, for example Ref. [7,8]), real viscoelastic 

materials shows a large spectrum of relaxation times, actually covering several order of 

magnitudes. Computational complexity is, furthermore, boosted when accounting for the 
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roughness between the contacting surfaces. Persson [9], has developed an innovative analytic 

approach to account for the role played by the roughness and calculate, among the other 

quantities, the contact area and the viscoelastic dissipation. This methodology, being exact in 

full contact conditions, is approximate in partial contact conditions of practical interest. 

   Regarding the numerical methods, in spite of the availability of many boundary element 

formulations able to provide, at least for the case of smooth contacts, an accurate interfacial 

solution, we still lack a methodology being not limited to one relaxation time [10]. Furthermore, 

finite element methods (FEM) [11-16] are capable of managing real materials, but, usually, they 

do not provide an accurate interfacial stress estimate. Indeed, this problem is particularly serious 

in case of rough viscoelastic contact, where roughness introduces a very large number (covering 

even six orders of magnitudes) of length-scales and time-scales: consequently, a very fine 

discretization grid could be required, thus leading to an exponential increase of the degrees of 

freedom and to impracticable computation times. 

    In this paper, our aim is to propose an effective  numerical methodology capable of 

determining the viscoelastic rough contact solution. In details, the theory presented by the 

authors in [3] is shown to be able to study the contact of a rough surface sliding over a 

viscoelastic half space. Indeed, the computation complexity of the contact domain is solved by 

employing the adaptive non uniform mesh developed by the authors in [2,3]. This scheme 

allows us to decrease the number of elements needed to solve the problem; in such a way, the 

computation time results significantly reduced. By means of this approach, we calculate the 

viscoelastic friction and analyze the contact area anisotropy due to viscoelasticity effects . 

2 MATHEMATICAL FORMULATION 

In [1, 2], in order to analyze the contact between linear elastic materials, the authors developed 

a boundary element formulation based on the following integral equation: 
  

                                                                                        𝑢(𝒙) = ∫ 𝐺(𝒙 − 𝒙′)𝜎(𝒙′)𝑑𝑥′2

𝐷
                                                  (1) 

 

This relation correlates the interfacial normal stress 𝜎(𝒙) to the displacement distribution 𝑢(𝒙) . 
In [2], the domain D has been meshed in small squares of different size by use of a non-uniform 

adaptive discretization. It was, therefore, possible to reach a fully converged numerical solution 

with relatively low computational costs. 

    Our following purpose has been to formulate the viscoelastic problem in such a way that the 

final equation could be written in a form similar to Eq. (1).  In detail, when focusing on a 

viscoelastic half-space that is moving at constant velocity v on a rigid substrate, the problem 

solution will require to determine the steady-state pressure distribution, the shape of the 

deformed interface, the contact area and the friction force. 

    Moving from this point of view, we observe that for a viscoelastic linear material, the relation 

between the displacement at the interface and the interfacial normal stress distribution can be 

written in the form: 
 

                             𝑢(𝒙, 𝑡) = ∫ 𝑑𝜏
𝑡

−∞
∫ 𝑑2𝑥′ 𝐽1(𝑡 − 𝜏)𝐽2(𝒙 − 𝒙′)𝜎̇(𝒙′, 𝜏)                                      (2) 
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where, for a generic linear viscoelastic material [3], 𝐽1(𝑡) is the creep function equal to 𝐽1(𝑡) =
1

𝐸0
− ∑ 𝐶𝑘exp (−𝑡/𝜏)+∞

𝑘=0  with 𝐶𝑘 positive coefficients,  and 𝐽2(𝑡) is the usual elastic Green’s 

function  𝐽2(𝑡) =
1−𝜈2

𝜋|𝒙|
. 

     Now, we observe that , due to the steady state assumption, 𝜎(𝒙, 𝑡)and 𝑢(𝒙, 𝑡) are 

respectively equal to 𝜎(𝒙, 𝑡) = 𝜎(𝒙 − 𝒗𝑡) and 𝑢(𝒙, 𝑡) = 𝑢(𝒙 − 𝒗𝑡). As a matter of fact, by 

following the mathematical procedure described in in [3], we can rewrite Eq. (2) as :  

 

     𝑢(𝒙) =
1−𝜈2

𝜋

1

𝐸∞
∫

𝜎(𝒙′)

|𝒙−𝒙′|
𝑑2𝑥′

𝐷
+

1−𝜈2

𝜋
∑ 𝐶𝑖 ∫ exp (−𝑧)

+∞

0
𝑛
𝑖=1 ∫

𝜎(𝒙′)

|𝒙−𝒙′+𝒗𝜏𝑖𝑧|
𝑑2𝑥′

𝐷
                (5) 

 

where 𝐸∞ is the high frequency viscoelastic modulus of the material. By adopting the iterative 

scheme introduced in [2] for the case of elastic materials, Eq. (5) can be quite easily inverted 

and the full solution of the viscoelastic problem can be achieved. As shown in details in [4], 

once calculated the stresses and the strains, we can determine the friction force as: 
 

                                                     𝐹𝐷 = ∫ 𝜎(𝑥)
𝜕ℎ(𝑥,𝑦)

𝜕𝑥
𝑑2𝑥

𝐷
                                                     (6) 

 

where ℎ(𝒙) = ℎ(𝑥, 𝑦)  is the rigid surface in motion over the viscoelastic half space.  

   In the previous formulation, we are neglecting the Coulomb friction: basically, we are 

determining the normal problem solution. However, this approximation does not lead to serious 

limitations because the normal stress and strain distributions, which are necessary to calculate 

the viscoelastic dissipation, are almost negligibly affected by the presence of tangential stresses 

at the interface. 

3 RESULTS: FRICTION & ANISOTROPY 

    To elucidate the main features of viscoelastic contacts, here we study the contact mechanics 

of a rigid rough fractal surface sliding over a viscoelastic half space (h→+∞) with  one 

relaxation time and, specifically, the following material properties: E∞=10⁷ Pa, E∞/E₀=3, and 

τ=0.01 s. As far as the rough surface, we numerically generate self-affine fractal surfaces by 

means of the spectral method described in [1,17]. These surfaces have spectral components in 

the wavelength range qL<q<q₁, where qL=2π/L (being L the side of the square computational 

cell is L=0.01m⁻¹), q₁=Nq₀ and N number of scales (or wavelengths). In particular, results 

shown in this section are obtained with N=64. 

   Our analysis starts calculating the viscoelastic friction. Indeed, in Figure 3, we analyze the 

viscoelastic friction as a function of the dimensionless speed ξ=vτ₀/L for the fixed normal load 

FN=0.30 N. As expected, we have a bell-shaped curve that vanishes for very low and very high 

speeds, i.e. when the solid behaves as an elastic solid. Indeed, for very low speeds, the material 

is elastic with the soft elastic modulus E₀, whereas for very high speed, it is elastic with hard 

modulus E∞ .  

   The following step is related to the anisotropy of the contact solution.  Indeed, given the 

constant normal force, due to the stiffening of the material, which occurs as the sliding speed is 

increased, the contact area strongly decreases with the speed. However, the area decrease is not 

only the effect, but, due to viscoelasticity, we have a marked shrinkage of the contact area: 
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although the rough rigid surface in contact is isotropic, the interfacial displacement field (the 

deformed surfaces) of the viscoelastic solid will show a certain degree of anisotropy. 

 

 
 

Figure 1.  Friction coefficient as a function of the dimensionless sliding speed ξ  for a constant 

normal load P=0.30 N . 

 

Contact Anisotropy can be quantified by focusing on the quantity m₂(θ): this is the second order 

spectral momentum of a profile trace made at an arbitrary angle θ with respect to the x axis of 

the random. The following relation can be applied [18]: 
 

                        𝑚2(𝜃) = 𝑚20𝑐𝑜𝑠2(𝜃) + 2𝑚11𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃) + 𝑚₀₂𝑠𝑖𝑛²(𝜃)                         (7) 
 

where m₂₀ is the value of the profile second order momentum along the x axis ( i.e. θ=0 ), m₀₂  

is the value of the profile second order momentum along the y axis ( i.e. θ=π/2 ) and m₁₁ is the 

association-variance of slope in these two directions [18] .  

 
Figure 2. Polar plots of m₂(θ)  for ξ= 1.17 10⁻² . 
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    Now, when the surface is perfectly isotropic, the momenta m₂₀ and m₂₀ are equals, while 

m₁₁ is zero: therefore, when plotting m₂(θ) in a polar diagram, in this case, we have a 

circumference with radius r=m₂₀=m₂₀ . On the other side, if the deformed region is anisotropic, 

m₂₀ and m₂₀ are different, and m₁₁ is not equal to 0; this entails different curves for polar plot 

of m₂(θ). As a matter of fact, a possible way to quantify the anisotropy level is related to the 

introduction of the following parameters: γ that is the ratio between the maximum and minimum 

values for m₂(θ) , and Θ being the angle of the profile with the maximum m₂(θ). In Figure 2, 

we observe that, for ξ= 1.17 10⁻², the surface shows a consistent anisotropy with γ=0.70 . 

Furthermore, Θ is almost equal to π/2, thus being perpendicular to the sliding speed assumed 

parallel to x axis. 

   The methodology just introduced relies on the analysis of the deformed surface; therefore, the 

approach could be not fully effective when considering very small contact area, since, in this 

case, the non-contact regions can have a prominent contributions blurring contact anisotropy. 

An alternative procedure, introduced in , deals with the contact area. This approach moves from 

defining the characteristic function χ(x), which is equal to 1 if x is in the contact region or, 

otherwise, to 0.  We can introduce the power spectral density Cχ(q) of χ(x) : clearly, if the 

contact area is anisotropic, the function χ(x) and the power spectrum  Cχ(q) will be themselves 

anisotropic. Indeed, in Figure 3, given a dimensionless speed ξ again equal to ξ= 1.17 10⁻², we 

observe that the contour curve Cχ(q)/Cχ(0)=0.476 is an ellipse stretched in the speed direction. 

This is perfectly coherent with the previous analysis, since the spatial frequencies are clearly 

related to the inverse of the spatial vectors.  

 

 
Figure 3. Contour curve Cχ(q)/Cχ(0)=0.476 for ξ= 1.17 10⁻² . 
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6 CONCLUSIONS  

    In this paper, the numerical theory already proposed by the authors in [3] is shown to be 

capable of exhaustively solving the sliding contact mechanics between a viscoelastic solid and 

a rigid randomly rough surface. In detail, by use of this numerical approach, we have evaluated 

the viscoelastic friction: as expected, this quantity shows a strong dependence on the sliding 

speed and, more specifically, tends to vanish for very high and very low speeds, i.e. when the 

solid shows an elastic behavior. Furthermore, we have shown how the viscoelasticity induces a 

marked anisotropy of the contact solution. Indeed, the contact area and, consequently, the 

deformed region are stretched along the speed direction. Anisotropy has been then quantified 

by following two different procedures, and, interestingly, the maximum degree of anisotropy 

has been found for the same speed of the maximum friction. We observe that both quantities, 

namely the friction and the anisotropy degree, have an outstanding importance in applications 

since influences phenomena, like energy dissipation and leakage. In this context, the presented 

numerical methodology contributes to simulate these phenomena, thus aiding an optimized 

design.  
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