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Abstract. In this paper an alternative vision, based on the Chaos Theory, for the analysis 

of soils systems oscillating under seismic forces is described. The topological tool, 

Recurrence Plots RPs, enables recognition and treatment of accelerations recorded in 

seismological stations located on soil deposits. The chaotic attributes obtained from RPs are 

interpreted for determining the natural period of vibration. This dynamic non-linear 

characterization could help in the evolution or reinterpretation of some partially understood 

aspects of seismic phenomena. 
 

 

1 INTRODUCTION 

The most astounding damages during earthquakes are caused by amplification due to 

site conditions. Present seismic design practices, which incorporate information from strong 

motion accelerograms, very seldom reconcile the differences between accelerographic 

measurements and theoretical predictions. One factor involved, which is recognized as being 

very influential, is the effect of local conditions.  

Scholars studying earthquake damage have observed the modification of earthquake 

motion by local soil for a long time [1]. The earliest researchers to quantify the problem were 

the Japanese, the most prominent ones being Sezawa ([2],[3]) and Kanai ([4], [5]). These 

researchers obtained algebraic expressions in the frequency domain for the surface motion to 

incident wave ratio from the assumption of stationary, vertically propagating, plane SH 

waves. Their work is limited to one and two horizontal layers of constant velocity for which 

they included the visco-elastic behavior and predict important amplification at the natural 

mode periods of the soil given by  

 

     
  

        
   (1) 

 

where n is the mode number, H the soil depth and VS is the soil shear wave velocity. 

Therefore, when Fourier spectra from earthquake accelerograms show important peaks at the 
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natural frequencies of the soil, they are normally considered to be a consequence of the soil 

amplification of stationary, incoming shear waves.  

 

However, the unexpected collapse of structures due to soil amplification effects, 

designed according to modern seismic codes during the Mexico 1985, Chile 2010 or Tohoku 

2011 earthquakes, for mentioning a few, has taken to review soil amplification theories by 

deploying high-density accelerograph arrays to have a better understanding of the 

phenomenon. A key aspect to be elucidated in this topic is the natural periods of soils 

deposits. In this investigation, an alternative process to estimate the natural period of the 

vibration from accelerograms is presented: Recurrence Plots RPs [6].  

 

The RPs, a topological technique from the Chaos Theory, enable the treatment of the 

measured accelerations for efficient interpretation of the movements. In an RPs the dynamics 

of soils systems vibrating under seismic forces, is reconstructed. Through the projection of the 

one-dimensional time series to the topological space of much higher dimensions, behaviors 

and trends, discovered in the reconstructed dimension, are studied. This theoretical approach 

captures the true oscillations (deterministic, chaotic or both) and permits to categorize 

vibrations by the fundamental period, directly from the accelerations registered. An important 

contribution of this study is the possibility, by means of RPs, of identifying  i) materials 

highly sensitive to initial conditions, e.g. small differences in directivity, fault mechanism or 

distance, yield widely diverging outcomes (accelerations) and ii) deterministic or 

“predictable” stratigraphies, it means, soils systems whose behaviors can be acceptably 

predicted. Even more interesting is the conclusion about the changes in the conditions of soils 

masses that could drive the system from determinism to chaos.  

 

 

2 ANALYZING COMPLEX SYSTEMS  

"The real voyage of discovery consists not in seeking new lands, but in seeing with 

new eyes", M Proust (1871-1922). The strategy in any earthquake&geotechnical conception is 

designing based on solid criteria, intuitive imagination and emergent learning. Transformation 

and perpetuation, interaction and coexistence, order and conflict are words that must be 

integrated in the engineering knowledge because the specialist in this area have to find 

solutions to the problems faced by the most challenging environment: the nature.  

 

What is needed is an alternative and reliable recording-based approach to explore, to 

characterize and to quantify earthquake-induced effects. Analysis from a nonlinear dynamics 

perspective may yield more fruitful results; still, this is not a straightforward task. Calculation 

of empirical global nonlinear quantities, such as Lyapunov exponents and fractal dimension, 

from time series data is known to often yield erroneous results ([7],[8]). The literature is 

replete with examples of poor or erroneous calculations and it has been shown that some 

popular methods may produce circumspect results ([9],[10]). Limited data set size, noise, 

nonstationarity and intricate dynamics are presented as additional complications. The 

concerns about the data are compounded by concerns about analysis. It is expected that the 
following consistent synthesis of the RP-analysis will enable researchers to perform studies 
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more efficiently and more confidently. Thus it is encouraged that first at all, the user 

familiarizes him with the background and the methodology before attempting any analysis. To 

make the paper self-contained, some key concepts of Chaos Theory and Recurrence Plots are 

presented in the following paragraphs.  

2.1 Recurrence Plots 

Having established that a system contains a chaotic attractor, the process can be 

modeled by reconstructing the state space. Two methods are available: the method of delays 

and principal component analysis. We will not give a detailed description of principal 

component analysis because in this investigation the method of delays is used. Thus, we refer 

the reader interested on the former method to Broomhead and King [11].  

Mutual Information. Frasier and Swinney [12] proposed mutual information method to 

obtain an estimate for delay time,   [13]. Mutual information provides a general measure for 

the dependence of two variables, thus, the value of   for which the mutual information goes to 
zero is preferred. Additional arguments for choosing the first zero can be found in [14].  

Mutual information is a measure found in the field of Information Theory. Let   be a 

communication system with            a set of possible messages with associated 

probabilities                       . 

The entropy   of the system is the average amount of information gained from 

measuring   and it is defined as 
 

                           (2) 

 

For a logarithmic base of two,   is measured in bits. Mutual information measures the 

dependency of       . Let                    , and consider a coupled system      . 

Then, for sent message   and corresponding measurement   , 

 

                                         (3) 

  
          

      
   

          

      
 

 

 

where              is the probability that a measurement of   will result in   , subject to the 

condition that the measured value of   is   . Next we take the average uncertainty of         

over   , 

                         (4) 

                
          

      
  

 

                   

with 

                                      (5) 
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The reduction of the uncertainty of   by measuring   is called the mutual information 

       which can be expressed as 
 

                      (6) 

 

                             (7) 

 

where      is the uncertainty of   in isolation. If both   and   are continuous, then 
 

                     
        

          
      (8) 

 

If   and   are different only as a result of noise, then        gives the relative 
accuracy of the measurements. Thus, it specifies how much information the measurement of 

    provides about      . The mean and variance of the mutual information estimation can be 

calculated [15]. Although mutual information guarantees decorrelation between    and     , 

and between      and      , it does not necessary follow that    and       are also 
uncorrelated [16].  

False Nearest Neighborhoods. Mutual information gives an estimate for   , but does 

not determine the embedding dimension  . The Takens’ Theorem [15] states that an  -

dimensional attractor will be completely unfolded with no self-crossings if the embedding 

dimension is chosen larger than   . In this work, the method of false nearest neighbors is 

used for finding a good value for   [17]. 
The method is based on the idea that two points close to each other (called neighbors) in 

dimension  , may in fact not be close at all in dimension    . This can happen when the 

lower dimensional system is simply a projection of a higher dimensional system, and it is 

unable to completely describe the system. Thus, the algorithm searches for “false nearest 

neighbors” by identifying candidate neighbors, increasing the dimension, and then inspecting 

the candidate neighbors for false ones. When no false neighbors can be identified, it is 

assumed that the attractor is completely unfolded and  , at this point, taken as the embedding 
dimension. 

2.2 Recurrence Analysis  

The set of nonlinear dynamic techniques, called Nonlinear Time Series Analysis [18], 

can be classified into metric, dynamical, and topological tools. The metric approach depends 

on the computation of distances on the system's attractor. The dynamical approach deals with 

computing the way nearby orbits diverge by means of estimating Lyapunov exponents. 

Topological methods are characterized by the study of the organization of the strange 

attractor, and they include close returns plots and Recurrence Plots RPs [6]. 

RPs are intricate and visually appealing. They are also useful for finding hidden 

correlations in highly complicated data. In this work the RP-analysis is extended, formalized, 

and systematized in a meaningful way that is based both in theory and experiments and that 
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targets both quantitative and qualitative properties for its geotechnical and seismological 

application.  

In this section, we briefly outline some of the basic features of RPs and describe how 

an RP of an experimental data set can be generated. The standard first step in this procedure is 

to reconstruct the dynamics by embedding the one-dimensional time series in a 

   dimensional reconstruction space using the method of delay coordinates. Given a system 

whose topological dimension is  , the sampling of a single state variable is equivalent to 

projecting the  -dimensional phase-space dynamics down onto one axis. Loosely speaking, 

embedding is akin to “unfolding” those dynamics, albeit on different axes (Packard et al, 

1980; [15]). Given a trajectory in the embedded space, finally, one constructs an RP by 

computing the distance between every pair of points (     ) using an appropriate norm and 

then shading each pixel (   ) according to that distance. The process of constructing a correct 

embedding is the subject of a large body of literature and numerous heuristic algorithms and 

arguments. Abarbanel [20] gives a good summary of this extremely active field. 

Delay Coordinate Embedding. To reconstruct the dynamics, we begin with 

experimental data consisting of a time series: 

 

              (9) 

 

Delay-coordinate reconstruction of the unobserved and possibly multi-dimensional phase 

space dynamics from this single observable   is governed by two parameters, embedding 

dimension    and time delay  . The resultant trajectory in     is: 
 

              (10) 

 

where             and 
 

                                 (11) 

 

for            Note that using   =1 merely returns the original time series; one 

dimensional embedding is equivalent to not embedding at all. Proper choice of    and   is 
critical to this type of phase-space reconstruction and must therefore be done wisely; only 

“correct” values of these two parameters yield embeddings that are guaranteed by the Takens 

Theorem [15] to be topologically equivalent to the original (unobserved) phase-space 

dynamics.  

Assuming that the delay-coordinate embedding has been correctly carried out, it is 

natural to assume that the RP of a reconstructed trajectory bears great similarity to an RP of 

the true dynamics. Furthermore, we expect any properties of the reconstructed trajectory 

inferred from this RP to be true of the underlying system as well. This is, in fact, the rationale 

behind the standard procedure of embedding the data before constructing a RP. 

Constructing the Recurrence Plot. RPs are based upon the mutual distances between 

points on a trajectory, so the first step in their construction is to choose a norm  . In this work 
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the maximum norm is used, although in one dimension the maximum norm is, of course, 

equivalent to the Euclidean p-norm. We chose the maximum norm for two reasons: for ease 

of implementation and because the maximum distance arising in the recurrence calculations 

(the difference between the largest and smallest measurements in the time series) is 

independent of embedding dimension    for this particular norm. This means that we can 

make direct comparisons between RPs generated using different values of    without first 

having to re-scale the plots. Next, we define the recurrence matrix   as follows: 

 

                          (12) 

 

                   
                    

  (13) 

 

The time series spans both ordinate and abscissa and each point (   ) on the plane is 

shaded according to the distance between the two corresponding trajectory points    and    

(Figure 1). The pixel lying at (   ) is color-coded according to the distance. For instance, if the 
117th point on the trajectory is 14 distance units away from the 9435th point, the pixel lying 

at (117, 9435) on the RP will be shaded with the color that corresponds to a spacing of 14.  

 

 
 

Figure 1: RP graphique description 
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Figure 2 shows RPs generated from very different data sets: from a time series derived 

by sampling the function        until a noise series. The colors on these plots range from 
white-yellow for very small spacing to dark blue for large inter-point distances (see 

calibration bar in Figure 1). With this in mind, the sine-wave RP is relatively easy to 

understand; each of the “blocks” of color simply represents half a period of the signal. The 

lower RPs in the Figure 2, generated from chaotic data sets, are far more complicated, 

although they too have block-like structures resembling what might be expected from a 

periodic signal. These signals, though, are not periodic, so the repeated structural elements in 

the plot request an explanation. Alternatively, recurrence points for the white noise (at the 

bottom of Figure 2) are simply distributed in a homogeneous random pattern, signifying that 

the variable lacks of deterministic structures.  

 

 

Figure 2: Examples of Recurrence Plots and Phase Space Plots of different data sets. 
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Structures in RPs. As already mentioned, the initial purpose of RPs was to visualize 

trajectories in phase space, which is especially advantageous in the case of high dimensional 

systems. RPs yield important insights into the time evolution of these trajectories, because 

typical patterns in RPs are linked to a specific behavior of the system. Following the phase 

space characteristics, the path in the correlation dimension curve and the large scale patterns 

in RPs, designated as typology, the RPs structures can be classified as homogeneous, periodic, 

drift and disrupted ones [21]: 

 Homogeneous RPs are typical of systems in which the relaxation times are short in 
comparison with the time spanned by the RP. An example of such an RP is that of a 

stationary random time series. See the uniformly distributed white noise example 

shown in Figure 2. 

 Periodic and quasi-periodic systems have RPs with diagonal oriented, periodic or 
quasi-periodic recurrent structures (diagonal lines, checkerboard structures). Figure 2 

shows the RP of the sine signal, example of a periodic system. Irrational frequency 

ratios cause more complex quasi-periodic recurrent structures (see the ECG, Lorenz, 

Rössler and sun spots examples); however, even for oscillating systems whose 

oscillations are not easily recognizable, RPs can be very useful. 

 A drift is caused by systems with slowly varying parameters, i.e. non-stationary 

systems. The RP pales away from the line of identity, LOI (the main diagonal line in a 

RP,       ). 

 Abrupt changes in the dynamics as well as extreme events cause white areas or bands 
in the RP, for example the Brownian motion. RPs allow finding and assessing extreme 

and rare events easily by using the frequency of their recurrences. 

A closer inspection of the RPs reveals also the texture or small-scale structures [6], which 

can be typically classified in single dots, diagonal lines as well as vertical and horizontal 

lines (the combination of vertical and horizontal lines obviously forms rectangular clusters 

of recurrence points); in addition, even bowed lines may occur [21,6]: 

 Single, isolated recurrence points can occur if states are rare, if they persist only for a 

very short time, or fluctuate strongly. 

 A diagonal line               
   

 (where   is the length of the diagonal line) occurs 

when a segment of the trajectory runs almost in parallel to another segment  for   time 
units: 

 
 A vertical (horizontal) line              

   
  (with v the length of the vertical line) 

marks a time interval in which a state does not change or changes very slowly: 

 
The state is trapped for some time. This is a typical behavior of laminar states 

(intermittency) [21]. 

      ≈       ,   +1        ≈   +1        ,  ,   +𝑙 1             ≈   +𝑙 1              

      ≈       ,       ≈   +1        ,  ,       ≈   +𝑣 1              
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 Bowed lines are lines with a non-constant slope. The shape of a bowed line depends on 
the local time relationship between the corresponding close trajectory segments. 

RPs of paradigmatic systems provide an instructive introduction into characteristic typology 

and texture but the visual interpretation of RPs requires some experience. A deeper 

explanation about typology and texture is presented in [22].  

 

2 RECURRENCE IN ACCELEROGRAMS 

A set of acceleration time series recorded in the soft soils of the Mexican metropolis are used 

to study its chaotic nature. The soil systems and the recorded responses studied here are on the 

surface of 16 soft soils (clays) and 4 stiff deposits within the urban area of Mexico City. The 

soft soils are located on the lacustrine basin where soils were deposited by air or water 

transportation (very soft clay formations with large amounts of microorganisms interbedded 

by thin seams of silty sand), some others are product of volcanic effusions that took place 

within the last one million years (fly ash and volcanic glass) and there are stations on a third 

type of soils that are considered firm or materials rock-like. The elastic natural periods    
(key parameter in ground motions categorization) of the sites included in the database vary 

from         to         . Fifteen earthquakes were selected having at least 100 s and high 

signal-to-noise ratios. These events are representative of the tectonic regions (different source 

mechanism) that affects the valley. The set is denser in events from the subduction of the 

Cocos Plate into the Continental Plate because they are associated to the most damaging 

shocks.  

  

Information accumulated over the last four decades has firmly established that the 

seismic movements within the Basin of Mexico can differ considerably from one site to the 

other [22]. The statutory regulations have tried to take into account these facts but still there 

are dangerous doubts about the outcome patterns. The purpose of the following analysis is to 

illustrate an alternative way in which the oscillations can be described and to provide a 

qualitative understanding of the complex system responses. 

2.1 RPs- large scale 

Examples of RPs obtained from accelerograms recorded during the earthquakes are 

shown in Figure 3. One intriguing and puzzling characteristic of the RPs is the structural 

similitude that they exhibit with different seismic and site conditions. Evaluating RPs 

constructed from accelerograms recorded during the same event on different site conditions, 

one question is obligated: do soft soils and rocks, when are excited by the same seismic force, 

move similarly? On the other hand, keeping constant the soil properties (dividing the database 

in a separated sets: soft-soils/rock -stiff- masses) and varying the seismic inputs (earthquakes), 

the RPs structures are exceptionally comparable and the doubt is evident: do earthquake 

mechanism, distance (from epicenter to the site) and directivity have a tangible, real impact 

on materials vibrations? The answers, based on large scale, do not correspond with 

engineering criteria and experience: soils and rocks do move differently and seismic inputs do 

have a deep effect on the response recorded.  
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Figure 3: Recurrence Plots from soft and stiff deposits, different input seismic loads. 
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Through a deep inspection of the RPs and using nonlinear concepts we found that the 

ground structures (soft and stiff, homogeneous and heterogeneous deposits) when are affected 

by seismic forces, in a macro scale, evolve in a similar way. The time evolution of the ground 

accelerations exposes well defined white areas and cold bands (green/blue strips), hallmark in 

nonstationary systems. The combination of vertical and horizontal strips forms rectangular 

clusters where the maximum accelerations are located. Because of the abrupt changes 

between the beginning, the intense and the final part of the movements, a ground motion can 

be defined as an event that contain extreme sub-events (maximum accelerations) where the 

ground conditions are anomalous for some seconds to then vanish until the movement 

finishes. The number of clusters that appears in the RPs is the recurrence of the sub-events. 

The study of vertical RP structures makes the identification of trapping time (seconds that soil 

and rocks are being truly perturbed) possible. The ground response is very far from the 

deterministic behavior of the very well-known pendulum’s oscillation (under damped 

vibration - low drive frequencies or if the drive frequency is raised and the attractor undergoes 

a series of bifurcations). None of the RPs of accelerograms can be related with the patterns of 

the pendulum’s attractors.  The underlying process in seismic ground motions seems much 

more complex, large-scale observed, and it cannot be directly labeled as “deterministic”, 

“chaotic” or “random”.  

As a conclusion we can say that soils and rocks are nonlinear devices because they 

become activated when their reaction potential crosses a certain threshold. The activity of 

large formations of geological materials (soils and rocks) is macroscopically measurable in 

the accelerogram which results from a spatial integration of many reaction potentials (the 

environment interacting). The RPs-vertical structures displayed by the layered natural 

materials should be related with intermittence (alteration of phases of seemingly periodic 

systems). The apparent periodic phases of the ground behavior are not quite, but only nearly 

periodic. Thus, rather than a truly-periodic series of values, the data are apparently periodic 

but where the chaotic nature of the system becomes apparent after certain ground acceleration 

is reached. It is very important to point out that intermittence is more patent during large 

earthquakes, and a probably reason, which looks a paradox, is that the energy released from 

the source is not permanently continuous on time, there are relax intervals in between without 

important seismic wave arrivals from the source. The intermittence in accelerograms could be 

related with the intense part of the earthquake.  

2.2 RPs- small scale 

Delay-coordinate embedding produces clean, easily analyzable pictures of the ground 

dynamics and the results suggest that the dynamical behavior of the soils/rocks is very high-

dimensional. This implies that the system is probably influenced by variables that can be 

hardly identified or that are beyond the limits of our current understanding [23]. However, a 

proper definition of initial conditions permits characterizing the system evolutions and 

extracting meaningful (for engineering purposes) conclusions about the behavior of this 

complex natural structure. Zooming into the RPs, above the intense part of the response 

(blue/green clusters) the soil response can be studied from the clear and suggestive signatures 

in the sub-plots. The width of the vertical band indicates the time in which the intense state 

does not change or changes very slowly. The strong ground accelerations are trapped for some 
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seconds (the cluster base) and because this extreme situation is not an isolated point (rare) the 

possibility that this alteration had been produced by noise is eliminated. In this intense time, 

periodic, chaotic or random patterns can be recognized and the parameters range over which 

the system is stable and where the trajectories are divergent could be identified. 

 

Harmonics in soft soils oscillations. Observe Figure 4. These clusters were obtained 

from accelerograms recorded in soft soils deposits. These examples show diagonal oriented 

recurrent structures that can be related with the vibration of one degree of freedom 1D 

oscillator. Due to space restrictions only some examples are showed, but they are 

representative of the structures displayed for the whole soft-soils set. 

 

 

Figure 4: Diagonal structures in soft soils. 
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Figure 5: Recurrence period for soft soils. 
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Assuming that during intermittence soft soils behave as a 1D oscillator, the period of 

soil vibration during the semi-sinusoidal oscillation (in this investigation called    ) can be 
obtained from the distance between diagonals, as shown for sine signal in Figure 1. For a 

same site, no important degradation is observed in    , even when the records came from 
different intensity, frequency and duration input conditions. Beyond the scope of this work is 

the discussion about the impact of the differences between     and    in the aseismic design, 

but no doubt exists that the     values are more authentic than those obtained from spectral 
analyses and many important conclusions about nonlinearity and site effects must be re-

evaluated using these findings. In Figure 5 some sub-plots are presented to make clear this 

assumption. The sites are SCT and CDAO, two emblematic deposits because of their 

astounding amplification behavior. During the catastrophic earthquake suffered in Mexico 

City (Sept 19
th

 1985 Michoacán event) these two stations recorded more than 10 times the 

accelerations measured in stiff deposits (rock like materials) and resonance phenomena is 

added to the scientific explanations about the enormous movements in this zone. In Mexican 

construction codes the recommended fundamental period for SCT is          and for 

CDAO         .  

Chaotic vibrations in stiff soils structures. The clusters in Figure 6 are far more 

complicated.  The checkboard structures and the upward diagonal lines result from strings of 

vector patterns repeating themselves multiple times down the dynamics. This type of recurrent 

structure indicates that the dynamics is visiting the same region of an attractor at different 

times; therefore, the presence of diagonal lines indicates that deterministic rules are present in 

the dynamics. The set of lines parallel to the main diagonal is the signature of determinism, 

however, it is not so clear as in soft-soils (e.g., the size of the lines being relatively short 

among a field of scattered recurrent points), i.e., the RPs contain subtle patterns not easily 

ascertained by visual inspection.  

Although the blocklike structures resembling to what might be expected from a 

periodic signal, the rock-like materials exhibit a complex recurrent behavior with irregular 

cyclicities that qualifies them as dynamical systems and their behavior as typical for nonlinear 

or chaotic systems. This means that the deposits in Hill zone are highly sensitive to initial 

conditions, e.g. small differences in directivity, fault mechanism or distance, yield widely 

diverging outcomes.  

As in many natural systems, the geological materials constitute systems that can be 

called deterministic, meaning that their future behavior is fully determined by their initial 

conditions, with no random elements involved. The deterministic nature of rock (stiff 

materials) systems does not make them predictable. The rock-like deposits behavior can be 

described as deterministic chaos, or simply chaos. 

 

3 CONCLUSIONS 

Based on the findings of this study, recorded accelerograms on soils and rocks should 

be considered as a sequence of episodes of seismic wave arrivals alternated with free soil 

vibrations episodes, behavior related with intermittence. 
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Figure 6: Quasi-periodic structures in stiff deposits. 

 

It has been noticed, from the analyzed cases (different fault mechanisms, epicentral 

distances and magnitudes), that there are no significant differences between soil and rock time 

evolutions (macro-scale). The study of the alteration of phases in RPs drives to the conclusion 

that soils and rocks deposits responses can be characterized only in the intense part of the time 

series (clusters blue/green bands, maximum accelerations zone).  
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RPs of stiff materials, in general, display more complicated structures but they 

resemble chaotic movements for the universe of initial conditions analyzed. Despite being 

chaotic, the trajectories are actually quite organized, but a vibration period cannot be 

determined. 

Soft soils deposits progress from quasi-periodic to periodic oscillations as the 

amplitude of the seismic responses exceeds certain acceleration thresholds. The deposits 

studied can be linked to certain determinism, the diagonal bars in the intense part of the 

response are directly related with the natural period of each stratigraphy.  

The inconsistency between soil amplification theories and accelerographic 

measurements for large earthquakes could be re-interpreted through Chaos theory: Geological 

materials are systems that evolve in a similar way, in the macro-scale, but is in the micro-

scale that the materials display particular trajectories.  
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