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Abstract. In this work we have developed the first hyperelastic strain energy function for 

orthotropic continua that is able to map the same logical properties of advanced isotopic 

hyperelastic constitutive laws. In particular, we choose the model of Simo and Pister (1984) 

and physically replicate the model in orthotropy by use of Intrinsic-Field Tensors. First, we 

show that the model can be represented by a standard archetypal equation for strain energy. We 

expand this equation out to an uncompressed form of quadruple contractions between fourth-

order tensors, rather than of scalar products of scalar invariants. In the final step, the Lamé 

parameters of Simo and Pister’s model are replaced by a proposed orthotropic form – scalars 

replaced by fourth-order tensors – and then interchange the classical strain tensors with 

advanced Intrinsic-Field Tensors of the equivalent order of strain measure. The resulting model 

collapses back down to the isotropic form by nothing more than equality of parameters in all 

directions (isotropy). We propose that the new model is not an orthotropic ‘equivalent’, but 

actually the parent form of the model, which essentially represents Simo and Pister 

hyperelasticity without the luxury of isotropic material properties, without the ease of 

representation by scalar invariant and without the simplicity afforded by classical symmetric 

strain and deformation tensors. The orthotropic hyperelastic theory presented here represents 

the archetype for a comprehensive new elasticity theory called Orthotropic Continuum 

Mechanics.  
 

 

1 INTRODUCTION 

Hyperelastic materials are a class of solids that can be modelled as continua with rate-

independent strain energy defined purely as a function of deformation and the material 

parameters. The Simo and Pister model [1], like most hyperelastic Strain Energy Functions 

(SEFs), is restricted to isotropic materials; one of its particular benefits is that pure distortional 

deformation is independent of the volumetric modulus for finite strain, and that the volumetric 

strain is a logarithmic function of deformation. From a mathematical standpoint, the scalar 

strain energy function is expressed as the product of scalar deformation invariants and scalar 

coefficients. 
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In this paper we posit that there is a generalised form of the SEF that a large class of 

hyperelastic functions should be able to be written within, and that those that cannot can either 

be closely approximated by the general form or do not satisfy certain expected boundary 

conditions of finite strain hyperelasticity. Correspondingly, use of the model guarantees the 

desired properties of many widely used isotropic models irrespective of its implementation. 

This general form of SEF is an abstraction one level up of the classical SEF and is 

mathematically encompassing due to its field variables that allow it to represent many 

difference SEFs in the same way that Seth–Hill strain can encompass most strain measures; we 

called it the Generalised Strain Energy (GSE). 

After first demonstrating that there is an exact representation for the isotropic Simo and 

Pister strain energy within the GSE, we further revisit the class of orthotropic tensors that are 

asymmetric and of the form of Intrinsic-Field Tensors (IFTs) [2]. We also propose a natural 

separation of the extended form of the Hookean material tensor for stiffness, which is naturally 

extended for IFTs such that it utilises all free terms within a fourth order tensor having major 

symmetry. These are the orthotropic Lamé material tensors for stiffness and compliance. These 

tools allow a new model for orthotropic Simo and Pister hyperelasticity that we purport to be 

the first of its kind and the only such model to inherit and maintain so many logical properties 

of isotropic hyperelasticity, structural tensors [3] and orthotropic material models 

simultaneously. Since the proposed model achieves these features by derivation and as pure 

theoretical development, the properties are ensured. 

2 ISOTROPIC SIMO AND PISTER MODEL 

2.1 Classical form of the isotropic Simo and Pister strain energy function 

The isotropic hyperelastic model of Simo and Pister[1] is desirable due to various logical 

properties. Shown as follows, 

       2 21 1 1
2 2 2

2S&P
ln ln tr 3 ln ln tr , whereW J G J G J J         b E  (1) 

    1 1
2 2

2
2 and tr tr 3 tr 3G     E C b , 

the derivative of this gives the Kirchhoff stress  : 

  ln J   I b I . (2) 

The strain energy function W uses the Lamé parameters λ and μ in a scalar product with invariant 

components of the deformation/strain tensor. Here, lnJ is the natural logarithm of J, the 

determinant of the stretch tensor U or similarly of the deformation gradient F. Additionally, b 

= FFT is the left Cauchy–Green tensor, noting that trb is the trace function of b, which is equal 

to trC, where C = FTF. Two particularly valued properties of the Simo and Pister model are: 

a) The deviatoric component of stress is only a function of μ 

b) The strain energy goes to infinity as either the volume goes to infinity or to zero 

(singularity) 
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Surprisingly few models meet criteria a) and b), which can easily be demonstrated. First, the 

deviatoric part of the stress measure S is  

  1
3

, where trdev vol vol   I      (3) 

Substituting Eq. (2), the volumetric part becomes 

  1
3

ln tr 3vol J  I + b I  (4) 

 and, where e is the Almansi–Euler strain, the deviatoric part in Eq. (3) becomes 

      1 1
3 3

ln ln tr trdev J J       I I e eI e eI  (5) 

noting that this is independent of the parameter λ. The next property, that of infinite strain 

energy at zero volume, can simply be seen to follow the logarithm of zero, ln0 = ∞.  

In this paper, we shall propose an orthotropic expansion of Simo and Pister’s model that 

preserves these properties while also remaining a valid orthotropic continuum model that 

collapses down to the isotropic model through nothing more than isotropic material parameters. 

2.2 Transformation into standard scalar form using series strain 

In order to elevate the form of the strain energy function in Eq. (1) we need to first turn the 

strain energy in to a standard form that is similar to the St Venant Kirchhoff model. The first 

component of the function is simply transformed through the identity 

    
0

ln ln det tr ln trJ   U U E , (6) 

where 
0
E  is the logarithmic strain following the Seth-Hill[4], [5] form of general strain: 

      1

n 0

1
, if 0 : , 0 : lnn n

n
n

n n
n

      E U I E U I E U  (7) 

This can be used to develop and interesting equality to replace 
2
E  in Eq. (1). Initially we note 

    
2

221 1
2 2

2 1 2 1 2 1 1
, 2 ,          E U I E U I E I E I E E E  (8) 

which represents 
2
E  in terms of 

1
E . This process is repeated to the limit as n → ∞, yielding 

 

 

1 2 3
0 1 21 1 1 1 1

2 4 8

1

2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1
2 4 8 16 2 2 22 1 0 02 2 2

21

2 02
0

... ...

n
n

n

  
 




 





            

 

E E E E E E E E E E E E

E E
. (9) 

Now, suppose we define a strain measure called Series Strain 

E , defined by 

  1

2 21

2 2
0

n
n

n









 E E ,  yielding (10) 
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2

2 0
 E E E . (11) 

Substitution of Eq. (6) and (11) into Eq. (1) gives 

      
2 2

2 21 1
2 2

0 0 0 0S&P
tr tr tr tr trW     

 

   
           

E E E E E E , (12) 

which is remarkably similar to the St Venant Kirchhoff (SVK) model: 

  
2

21
2

2 2SVK
tr trW  

 
   

E E  (13) 

This form provides the basis for representation by the generalised strain energy function present 

in the section that follows. 

3 GENERALISED STRAIN ENERGY (GSE) 

Given a fourth order tensor possessing major symmetry  = T, we note the identity 

  : :  = ::A C A C , (14) 

where the operator  is the tensor product used by Itskov[6],   ij klijkl
A BA B . Using Eq. 

(14), we can represent the classical linear Hooke’s Law  

  1 1
2 2

: : as ::W W     . (15) 

For a general representation of the model, we allow any order n of strain as per the Seth–Hill 

formula in Eq. (7), and so define a fourth-order tensor 

 
n n n

 E E . (16) 

This yields a general model than can encompass the sum of any number of strain orders in 

consideration of the repeated indices on one side of the equation (summation convention): 

 1
2

::
n n

W  . (17) 

The capacity of this to represent various models will become apparent in the coming sections. 

Further to this, we can define a fourth-order Strain Energy Tensor (SET), which maintains 

identity to the components of strain energy: 

 1
2

n n


 
 (18) 

This can be reduced back to the scalar value by summation of all elements of the tensor. 

The form of Eq. (17) is not limited to a typical Hookean stiffness tensor– as mentioned, the 

summation index n refers to the order identifier of the general strain, but it also has a 

corresponding component of  where it is split up into two fourth-order tensors separating the 

Lamé parameters, i.e. 
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  1
2

:: ::
m m n n

W    , where (19) 

 
iso iso

, . , .    I I I I  (20) 

Eq. (19) has the capacity to encompass a wide range of existing strain energy functions with no 

approximation. Essentially, it is the transformation of the function of strain energy from the 

scalar product of scalar parameters and invariants of strain into the quadruple contractions of 

fourth-order material tensors and fourth-order strains. 

3.1 Simo and Pister in GSE form 

With the development on the GSE in Eqs. (17) and (19) we can now easily transform the strain 

energy function of Simo and Pister, represented in a general scalar form in Eq. (12), simply by 

specifying the order of the strains: 

  1
2

0
:: ::W


   (21) 

In the case of the series strain, the corresponding fourth-order tensor is defined as 

  1

1

2 2 2
0

n
n n

n


 






  E E . (22) 

Eq. (21) is an exact representation of Simo and Pister’s isotropic hyperelastic model, though it 

is now in a form that is conducive to the introduction of direction dependence. 

4 ORTHOTROPIC CONTINUUM MECHANICS 

The proposed theory of Orthotropic Continuum Mechanics (OCM) constitutes the core 

theory for the developments in this paper. OCM is principally based on the removal of the 

symmetry assumption embedded in all strain tensors, which is to assume that each of the pairs 

of shear deformation in the three planes of a body are identical. This assumption is replaced 

with the implicit inclusion of equilibrium into the strain: 

 

Figure 1. In classical mechanics, moment equilibrium (symmetry of the stress tensor) is satisfied as a 

mathematical consequence of the assumed symmetry of the stretch tensor. It is inherently explicit. 

Classical mechanics

Strain Energy Stress
 ,W f E W S E

enforced symmetry

U  UT

ensuant equilibrium

 T T  E E  

Stretch
 uf U

external 
factors

internal 
factors

deriv.strain
 ,f nE U  ,f S E

material model,  . 

displacement, u forces, p
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Figure 2. In the proposed OCM theory, the classical system shown in Figure 1 is re-architected such 

that enforced moment equilibrium ties stress and strain together without the need for the external 

symmetry assumption. It is inherently implicit. 

The removal of the symmetry assumption would, without other modification, result in an 

infinite number of possible solutions to any given problem of material deformation. The 

possibility of this variation of solutions is called a field solution, and the particular and unique 

solution becomes determinable by the inclusion of the equations of equilibrium into the 

structure of the analysis system rather than by the symmetry assumption. As it turns out, the 

solutions of strain under this approach are asymmetric for materials with directional (or 

orthotropic) properties. The possible variability in the asymmetry of the strain tensor is 

encompassed in what is called a field tensor, and the field of variation depends on the degree 

of difference of the material properties in different directions, these values being intrinsic 

properties. For such reasons, we refer to the type of strain tensor used in OCM as Intrinsic-Field 

Tensors (IFTs), these being a foundational theoretical tool in the approach of this theory. The 

proposed modification to the most fundamental structure of solid mechanics is given in the 

Figures 2 & 3. Upon the integration of the constitutive law into the solution of the stretch and 

strain tensors, U and Œ from a given geometric displacement gradient, we must now deal with 

strain energy functions (as functions that are implicitly tied into the calculation of strain. Strain 

energy functions provide a single scalar value for the elastic potential energy density as a field 

solution over the geometry of the body. If the explicit architecture of Figure 1 is replaced with 

the implicit architecture of Figure 2, everything within the loop becomes interdependent and 

unified within the continuum theory; it is an implicit system. 

4.1 Intrinsic-Field Tensors for Deformation 

Earlier in this paper we referred to the classical stretch tensor U, we must now differentiate the 

stretch based on the material property-based domain. We shall introduce E to represent the 

domain of isotropic materials and the domain Œ to represent orthotropic materials. The property 

of symmetry is herein only afforded to the stretch tensor existing within the domain of isotropy. 

The well-known polar decomposition of the deformation gradient F into stretch and rotation 

R can be represented in isotropic parts 

 
TT

E E E E
,    F R U F F U U , (23) 

where the former equation indicates the multiplicative decomposition, and the latter implies the 

unitary and orthogonal nature of R. These equations are indeterminate – they have infinite 

solutions – and so in mechanics we impose a symmetry condition onto the stretch tensor: 

material model,  . The proposed “OCM”

displacement, u forces, pStretch
 

Œ
u,f U

external 
factors

internal 
factors

Strain Energy

Stress
 ,f S Œ

 ,W f Œ

enforced equilibrium

derivative
 

strain
Œ  f (U,n)

div  rb  0

W S Œ
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T 2T

E E E
   U U F F U  (24) 

In the present method, we require a stretch whereby the condition of symmetry is removed, 

which it turns out is only necessary for orthotropic and anisotropic domains. Thus the stretch 

tensor UŒ is potentially asymmetric. This has been published in the thesis by Kellermann[2]. 

Hence Eq. (23) remains similar 

 
TT

Œ Œ Œ Œ
,    F R U F F U U , (25) 

while the enforced symmetry is replaced by dependence on the RŒ, the IFT rotation as a 

function of the Rodrigues Rotation Vector Ω, hence 

  
T

ŒŒ

  
 

U R F . (26) 

It should be noted that Eq. (26) is solved simply by minimisation of the strain energy function, 

the variables being the components of the Rodrigues vector. An asymmetric stretch tensor 

results such that, unless isotropic, 
Œ Œ

ij jiU U . 

4.2 Generalised strain as and IFT 

It follows from the Seth–Hill strain in Eq. (7) and the redefinition of stretch in Eq. (26) that we 

can define a new IFT form of generalised strain: 

  1

n Œ

n

n
 Œ U I  (27) 

This measure is for the domain of orthotropic continua, and is not limited to positive integers, 

indeed negative values yield Eulerian measures; and, fractions to the limit of zero (the 

logarithmic strain as an IFT) are similarly useful. 

5 MATERIAL TENSORS FOR IFTS 

5.1 Orthotropic Hookean tensors for IFTs 

Since IFT theory differentiates between in-plane shear components[7], we require additional 

shear parameters in the sense that xy and yx properties become unique. This is quite a natural 

extension, as it simply means using the 9×9 stiffness matrix that follows from a 3×3×3×3 

material tensor. The most compact form of such properties uses indicial notation, where the 

compliance material tensor  in the orthotropic orientation denoted by 
 

   is expressed as 

 
    1ijkl ik jl ji ij kl lj lE        , (28) 

where ij  is the Kronecker delta, iE  are the components of the Young’s Modulus vector and 

ij  are the components of the Poisson Ratio matrix (see Reference [7]). 

Representing the compliance tensor in flattened matrix form   , it then is inverted as shown 
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    
1

  (29) 

to yield the orthotropic Hookean material tensor 
orth

 for use with IFTs. 

5.2 Orthotropic Lamé tensors for IFTs 

Various previous efforts have proposed a set of “orthotropic Lamé parameters”, though none 

meet a very simple requirement set out here: 

a) Reduces to the isotropic Lamé material tensors in Eq. (20) when properties are isotropic 

b) Addition of each yields the Hookean orthotropic material tensor of Eqs. (28) and (29), 

ensuring consistent tangent stiffness 

 The resulting proposed orthotropic Lamé tensors are 
orth

 and 
orth

 corresponding to λ and μ in 

isotropy. These are given for both compliance and stiffness in two-dimension as follows. 

   

   

  

  

 

 

2 21
23 32 23 32 1 21 23 31 12

2 21
12 13 32 2 31 13 31 13 22

orth

23 32 23 32 1

31 13 31 13 2

orth
2 21

1 12

0 0

0 0

0 0 0 0

0 0 0 0

2 1 2 0 0 0

0 2 1 2 0 0

0 0 1 0

0 0 0 1

E E

E E

E

E

E

E

        

        

    

    





    
 
         
 
 
 

    


     
  




   

   

 

 

23 32 1 21 23 31 1

12 13 32 2 31 13 2

orth orth orth
2 21

1 12

1 0 0

1 0 0

0 0 1 0

0 0 0 1

E E

E E

E

E

      

      











 

  
 

         
       
 

  

 (30) 

where 12 21 23 32 31 13 12 23 31 21 32 131                  . 

6 ORTHOTROPIC SIMO AND PISTER MODEL 

6.1 Orthotropic Simo and Pister using GSE 

Having shown the Simo and Pister model in the form of the GSE in Eq. (21), having presented 

the equivalent intrinsic-field tensors for the strains in orthotropy in Eq. (27) and having given 

the orthotropic equivalent of the fourth-order Lamé tensors in Equation (30) we are able to 

convert Simo and Pister isotropic hyperelasticity into a fully logically-compliant hyperelastic 

model. This is achieved through a series of generalisations whereby we replace 
iso

 with 
orth

, 
iso

 

with 
orth

 and  
n n

f E  with  
n n

f Œ . The resulting formula, expressed entirely as fourth-

order tensors, is 
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  1
2

0orth
:: :: ,

n n n
W


   Œ Œ  (31) 

with the more familiar form as follows. Orthotropic Simo and Pister Hyperelasticity: 

  1
2

orth 0 0
: : : :W

 
 Œ Œ Œ Œ  (32) 

In the next section we will complete the development of the equation by demonstrating that it 

has the correct tangent stiffness. 

6.2 Linearisation back to Hooke’s law 

Finally we can demonstrate that the proposed model reduces back to orthotropic Hooke’s law 

for IFTs, which has been shown to have identical strain energy to classical orthotropic Hooke’s 

law. Physically, this also shows that the tangent stiffness of the proposed orthotropic 

hyperelastic model is consistent with classical elasticity. As deformation gradient gets very 

close to the identity tensor, all strain measures linearise to the infinitesimal strain measure of 

Cauchy, though in the case of IFTs it is asymmetric: 

 as , ,
n n n n

     F I E E E Œ Œ Œ  (33) 

Thus equation (32) can be factored by the identical linear strain measures as 

  1
2

orth
: :W  Œ Œ  (34) 

and from Equation (30) we know that the two orthotropic Lamé tensor combine to give the 

extended orthotropic Hookean material tensor 
orth orth orth

  . Hence Eq. (34) returns to the 

familiar form 

 

1
2

orthorth

1
2

orth

: :

: : Orthotropic Hooke's Law

W 



Œ Œ

 
, (35) 

where 
orth

 is the classical orthotropic Hookean material tensor for stiffness. The proof of the 

equality between lines in Eq. (35) is obtained by using a mixing equation to generate the 

classical ‘combined’ in-plane shear moduli and then finding that the energies are always 

identical since 

  1
2 ij ji ijŒ +Œ  . (36) 

Thus classical tangent stiffness is guaranteed in the proposed model, and for that matter, any 

orthotropic hyperelastic model of the form of Eq. (19). 

7 CONCLUSION 

In this paper a new class of hyperelastic, orthotropic strain energy functions is introduced by 

way of demonstrating the conversion of the well-known Simo and Pister model. This is done 
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by first elevating the model from being isotropic & hyperelastic to being orthotropic & 

hyperelastic, and then reducing the orthotropic & hyperelastic model to being orthotropic & 

infinitesimal. Both the start point (Simo and Pister’s model) and the end points (Hookean 

infinitesimal orthotropy) are widely accepted models, and no approximations are made from 

the transition from one to the other. The resulting midpoint, the hyperelastic, orthotropic Simo 

and Pister model, maintains all the desirable qualities of its isotropic counterpart and of 

Hookean orthotropy. This alone should serve as a compelling argument for the introduction of 

intrinsic-field tensors and the greater proposed theory of Orthotropic Continuum Mechanics 

into the domain of contemporary continuum mechanics at large. This is by no means a 

specialised theory – its ability to encompass and adapt to a wide range of applications should 

be evident through the mathematics alone.  
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