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Abstract. To replicate clinically relevant blast trauma, shock tubes are often employed. One 
key assumption in the use of compressed gas or explosive driven shock tubes is that the shock 
wave output is planar no matter what the cross section of the shock tube and a fully developed 
shock wave is impinging on the test subject. The current investigation examines the effect of 
tube cross sectional shape and tube length on flow evolution and shock development to better 
understand design constraints and limitations when using shock tubes. Three dimensional 
arbitrary Lagrangian-Eulerian shock tube models were developed and simulated at 
physiologically relevant burst pressures of 2.32, 4.65, and 6.97 MPa.  Results show that 
planarity develops in a round cross section after approximately 7 diameter lengths down the 
driven section of the shock tube for the lowest burst level and after 5 diameters lengths for the 
highest level. Oscillatory off-axis waves are damped by destructive interference in the 
axisymmetric round cross section. Such damping did not occur in the square shock tube, 
which continued to show deviation up to 59.6% from planarity even at ten diameter lengths.  

1 INTRODUCTION 

Injuries associated with blast are the leading cause of mortality and morbidity in recent 
military conflicts1-4. Trauma can result from the impinging blast wave (primary blast), 
penetrating projectile and fragment impact (secondary blast), whole-body motion and non-
penetrating impact (tertiary blast), and burns and other injuries (quaternary blast) 5. It is 
believed that primary blast is a principal cause for mild to moderate traumatic brain injury, 
but the mechanism of injury is still poorly understood. This emphasizes the need for 
controlled blast experiments that generate repeatable, simplified loading conditions such that 
the specimen loading condition is well characterized.  

   Shock tubes are often used to replicate blast injuries in the laboratory. Driven by either 
compressed gas or small explosive charges, these experiments typically replicate a free field 
primary blast injury, i.e. the effect of an impinging shock wave on biologic tissues. One 
assumption inherent in replication of these test conditions is the assumption of shock wave 
planarity upon test specimen impingement. The impacting shock is assumed to be a traditional 
Friedlander wave characterized by a sharp rise in pressure followed by exponential decay and 
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2 METHODS 

To evaluate the effect of cross-sectional area on flow evolution, two arbitrary Lagrangian-
Eulerian (ALE) finite element shock tube models, a square and a round cross section, were 
constructed. These two cross section shapes represent the vast majority of shock tubes found 
in current blast literature15,16. Artificial bulk viscosity was used to capture shock propagation. 
Models consisted of a high-pressure driver region, an ambient driven section, and additional 
ambient volume for expansion at the end of the tube. Models were constructed with matched 
hydraulic diameters of 76 mm, a one diameter driver section and a ten-diameter driven 
section. These dimensions were chosen as previous studies have shown them to produce 
physiologically relevant overpressure and duration, and are of a suitable size for rodent injury 
models11. A mesh density of 1mm was selected as this has previously been shown to be 
sufficient to capture the response in shock tube simulations 17. Models were run in quarter-
symmetry for efficiency. Mesh statistics are displayed in  

Table 1. 
 

Table 1: Mesh statistics for shock tube simulation 

Cross section Round Square 
Hydraulic diameter (mm) 76 76 
Driver length (mm) 76 76 
Driven length (mm) 760 760 
Initial driver volume behind 
membrane (mm3) 

105,000 134,000 

Mesh density (mm) 1 1 
Number of elements 1.42E6 3.26E6 

The volume behind the membrane was approximated based on deformed geometry of a 
constrained 2D 0.5 mm membrane with elastic properties (ρ = 1.39E-6 g/mm3, E = 4895 MPa, 
ν = 0.4) and applied 2 MPa pressure. Membrane burst was assumed to be instantaneous. 
Tubes were simulated at three burst levels corresponding to previous round tube experimental 
tests with 0.5 mm, 1.0 mm, and 1.5 mm membranes11. Pressure in the driver section was 
initialized to 2.32, 4.65, and 6.97 MPa for the three levels, respectively, via a gamma-law 
equation of state. Initial conditions are defined in Table 2, where E0 is the initial internal 
energy per unit reference volume, V0 is the initial relative volume, and γ is the ratio of 
specific heats18. Models were constructed using LS-PrePost 4.0 and run in LS-DYNA R7.0.0 
(Livermore Software Technologies Corp., Livermore, CA, USA). Subsets of elements were 
selected within the cross section for each model with a temporal output resolution of 1 μs. The 
locations of these elements are shown in Figure 2. 
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4 CONCLUSIONS 

Shock tube simulations demonstrating differences between cross-sectional geometry were 
conducted. The oscillatory wave propagation between tube boundary and tube centerline 
causes disruption of wave planarity and impedes reproducible shock output for application to 
biomechanics of blast. While this effect is present in the round tube, the curvature of the tube 
wall aids in focusing these reflections and effectively damps spurious off-axis propagation. 
Due to the sharp corner in the square tube, this focusing is unable to occur, although variance 
in peak pressure did decline with distance. While the difference in arrival time across the 
pressure field is small, it serves as a confounding factor when evaluating the effective blast 
input on any specimen testing. More worrisome is these off-axis waves can constructively or 
destructively interfere with the axial propagation depending on their phase, creating 
differences in magnitude across the plane and generating a non-uniform wave front. 
Furthermore, if a large off-axis component is present in local regions of the incoming shock 
front, there is the potential for inducing unintended shear loading on the specimen. As a 
consequence of these findings, the assumption of a simple planar wave impingement is no 
longer valid for a square shock tube.  

As interest in shock tube testing for replicating blast exposure in animal models continues, 
standardization of testing conditions is critical. We show in this study the advantages of a 
round shock tube over a square shock tube. Additionally, given the axisymmetric geometry of 
a round tube and the benefit of generating a planar shock sooner, a shorter driven section may 
be used which is important in a realistic laboratory setting to generate appropriate blast 
conditions. The positioning of an animal inside versus outside the tube, both of which are 
often done in the literature, calls the validity of measured blast exposure into question. 
Specimen placed inside the shock tube may be within a region that violates the planar shock 
assumption. Additionally, although beyond the scope of the current study, confinement effects 
from waves reflecting off the specimen would likely further confuse determination of actual 
exposure. 
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