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Abstract. In this paper, a phase lag model is proposed in order to predict the fluid veloc-
ity threshold for a fluidelastic dynamic instability of square cylinder arrangement under
cross flow. A theoretical formulation of a total damping, including the added damping in
still fluid, the damping due to fluid flow and the damping derived from the phase shift
between the fluid force and tube displacement, is given. A function of fluid and structure
parameters, such as reduced velocity, pitch ratio, Scruton number, is thus obtained. It
is shown that this function, taken as function of the reduced velocity variable, vanishes
at the critical reduced velocity from which the fluidelastic dynamic instability of the tube
occurs. Obviously, the value of the critical velocity is depending on other fluid-structure
parameters. The obtained results are compared to experimental ones and those obtained
from other theoretical models.

1 INTRODUCTION

Fluidelastic instability is the most important of several flow-induced vibration excita-
tion mechanisms that could cause excessive vibration in heat exchanger cylinder arrange-
ments. Experience shows that most of heat exchanger tube vibration problems are related
to fluidelastic instability [7, 13, 9, 10]. Indeed, in presence of high flow confinement, the
thin cylinders could be subjected to strong vibrations, which may lead to instability de-
velopment and therefore to a risk of break or collision. To prevent such problems, it is
important to make a detailed analysis of flow-induced vibrations during design.

Several authors have addressed the problem of fluidelastic instability in cylinder arrange-
ments. Experimental [7, 13, 8, 16] and theoretical approaches [9, 10, 19] have been in-
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Figure 1: Square cylinder arrangement.

vestigated. In order to understand the physics of the instability mechanisms and prevent
them, many important theoretical models (see the review of [15]) and expremental results
(see the review of [11]) have been produced. However, the contribution of various geomet-
rical and fluid-structure parameters involved in the mechanism of fluidelastic instability
remains elusive.

Other authors have tried to separate the phenomena to better understanding the mech-
anism of fluidelastic instability. The potential flow approximation was therefore used
[1, 12, 3]. Unfortunately, it seems that inviscid flow theory is inadequate for stability
analyses of cylinder arrays in cross flow [15, 2].

The purpose of this article is to improve the potential flow model by including a damping
model which can make a good prediction of the velocity threshold for fluidelastic insta-
bility of a normal square tube bundle in cross flow. The model must be with sufficient
accuracy, easy to implement and not expensive in computation time. Three damping
terms are then included: (1) still fluid viscous damping, (2) fluid velocity-depending term
and (3) a phase lag model in order to taking into account of the phase shift between the
fluid force and tube displacement. The results are discussed and analyzed.

The obtained results are encouraging at this stage, comparing to available data from
experiments and existing models. Fluid-structure interaction and flow-induced vibration
in square cylinder arrangement under cross flow are investigated. In addition, the influence
of key physical parameters on fluid-solid dynamics interaction is quantified.

2 COUPLED PROBLEM FORMULATION

2.1 Irrotational fluid flow

Let us consider a square arrangement cylinders immersed in a Newtonian, incompress-
ible and irrotational (curl u = 0) fluid flow (Figure 1). Then there exist a scalar function
Φ(x, t) so that the fluid velocity u is written as,

u = ∇Φ. (1)
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By using the fluid incompressibility condition and slip boundary conditions, the equation
of Φ can be writen as [6],

∆Φ = 0 on ΩF (a),

∇Φ · n = −uI on ΓI (b),

∇Φ · n = uI on ΓO (c),

∇Φ · n = ṡ n2 on γ0 (d),

∇Φ · n = 0 on ΓW ∪ γi,i6=0 (e).

(2)

The fluid domain is denoted by ΩF while ΩS refers to the domain occupied by the tubes.
In this study, only the middle tube is in a free transverse displacements, with a velocity
ṡ, whereas the other tubes remain immobile. Let us denote by γ0 the interface between
ΩF and the mobile cylinder and by γi,i6=0 the immobile cylinders. ΓI stands for the inlet
section, ΓO the outlet section of the flow and ΓW the wall (fixed boundary). n = (n1, n2)

T

denotes the unit normal vector at ∂ΩF = ΓI ∪ΓO ∪ΓW ∪ γi pointing out of ΩF . The flow
is taken perpendicular to the tubes with a velocity field uI at the inlet ΓI and outlet ΓO.

2.2 Tube dynamics equations

The tube dynamics in the potential flow is governed by the following dimensionless
second order differential equation :

M s̈∗ +D ṡ∗ +K s∗ = 0,

s∗(0) = s∗0,

ṡ∗(0) = ṡ∗0,

(3)

where M = (m0 + ma)/ρ d
2 is the total mass ratio, D the total tube damping and K

the total tube stiffness, including hydrodynamic quantities. m0, ma and ρ represent
respectively the tube mass, added mass and fluid mass density. s∗ = s/d, ṡ∗ = ṡ/f0 d
and s̈∗ = s̈/f2

0 d are the dimensionless tube displacement, velocity and acceleration. d
represents the tube diameter and f0 the natural tube frequency in air.
The added mass and stiffness are computed from potential flow, by considering the fluid
force acting on the tube,

F =

∫
γ0

P n2 dγ0, (4)

where,

P = −ρ

(
∂Φ

∂t
+

1

2
|∇Φ|2

)
+ C(t), (5)
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is the pressure field in the fluid (Bernoulli formula) and C(t) a constant that can be taken
null.
The hydrodynamic damping resulting from irrotational flow is unfortunately inadequate
for dynamic fluidelastic stability analysis of cylinder arrays in cross flow [15, 1]. A theo-
retical model for the total damping D is needed to perform this analysis.

3 DAMPING MODEL

Three damping terms are included in total tube damping term D. Still fluid viscous
damping, flow-depending term and a phase lag model in order to taking into account of
the phase shift between the fluid force and tube displacement.

3.1 Viscous damping

The still fluid damping gives rise, in non-dimensional case, to effective Scruton number,

Sc = 2 π ξM , (6)

where ξ is the damping ratio in still fluid and M = α0 + αa the total dimensionless mass
of the tube, derived from potential flow model [3], including the dimensionless added
mass αa = ma/ρ d

2. They can be analytically estimated by using the following formulas,
developed by Chen et al. [5],

αa ≈
π

4

1 + τ 2

1− τ 2
+

√
π

St
, (7)

and

ξ ≈ 1

f ∗M

[
α0 ξ0 +

1

2
π1/2 St−1/2 β0

]
. (8)

The Scruton number is then given as,

Sc ≈ 1

f ∗

[
Sc0 + π3/2 St−1/2 β0

]
, (9)

where f ∗ = f/f0 is the dimensionless tube frequency in still fluid. It can be analytically
estimated by using the following formula [4],

f∗ =
f

f0
=

√
α0

M
. (10)

The Scruton number Sc0 [18] being based on the structural damping ratio in air ξ0 and
fluid-structure mass ratio α0 = m0/ρ d

2. The Stokes number is defined as,

St = f0 d
2/ν , (11)
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Figure 2: Rogers’ equivalent confinement method

where ν is the kinematic viscosity coefficient, and β0 is given by [5],

β0 =
1 + τ 3

(1− τ 2)2
, (12)

where τ , defined as [14],
τ−1 = (1.07 + 0.56 pr) pr , (13)

is the confinement parameter τ = d/de according to Rogers’ method [17], which gives an
equivalent confinement term for a tube bundle configuration in function of the confinement
ratio of a cylindre in an annulus domain with external diameter de (Figure 2).

3.2 Flow-dependent damping

A dimensionless flow velocity-dependent fluid damping term as derived by [4] is also
included, namely

DF (ur) = (pr − 1)ur h , (14)

or equivalently,

DF (upr) =
(pr − 1)2

pr
upr h , (15)

where ur = uI/f0 d is the fluid reduced velocity and upr defined as,

upr =
up

f0 d
, (16)

is the reduced pitch velocity. up being the pitch velocity, given by,

up =
uI

1− p−1
r

, (17)

h = h(pr) is a loss coefficient, function of a pitch ratio pr. The experimental values of
h versus pitch ratio [10] are fitted by using the following 4th order polynomial regression
model for 1.2 ≤ pr ≤ 2 (Figure 3),
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hpr = a0 + a1 pr + a2 p
2
r + a3 p

3
r + a4 p

4
r , (18)

where the coefficients

(ai)i=0,··· ,4 = (52.39, −119.74, 103.38, −39.72, 5.72)

are obtained by the least square method,

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.4

0.6

0.8

p
r

h

 

 

Linear regression
Lever et al. 1986

Figure 3: Loss coefficient.

The effective non-dimensional damping is then given as,

D = 2Sc+DF +Dφ + C , (19)

where Dφ is the damping derived from the phase angle φ between the fluid force and tube
displacement [9, 10].
The essence of the present work is to give a simple theoretical model of Dφ who can
predict the critical velocity before dynamic instability occurrence.

3.3 Phase lag model

Let us consider a simple harmonic motion of the moving tube, given in dimensionless
form, by the following equation,

s∗ = s∗0 cos(ω
∗ t∗) . (20)

As the damping ratio ξ in potential flow is very small, the tube motion described by
the equation (20) is the approximate solution of equation (3). ω∗ = ω/f0 being the
dimensionless angular frequency in potential flow.
By considering the previous damping terms, the tube dynamics equation (3) can then be
written as, 

M s̈∗ + (2Sc+ (pr − 1)hur + C) ṡ∗ +K s∗ = F∗
φ,

s∗(0) = s∗0,

ṡ∗(0) = ṡ∗0.

(21)
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In the right side of the equation, the dimensionless hydrodynamic load F∗
φ is introduced. It

represents the part of the fluid load which is in out of phase φ with the tube displacement.
In this study, it is assumed that the phase shift φ is space dependent and varies linearly
from the immobile cylinder, at x = −pr (φ(−pr) = 0), to the moving cylinder, at x = 0
(φ(0) = φ0 6= 0). Figure (4) illustrates this assumption.

Figure 4: Linear dimensionless space variation of the force-displacement phase shift.

This means that the fluid force acting on the immobile cylinder, located upstream of
the moving cylinder (x = −pr), is in phase with the displacement of the tube (φ = 0).
While the phase shift is maximum (φ = φ0) at the moving cylinder location (x = 0). For
−pr ≤ x ≤ 0, the phase variation is linear and given by,

φ(x) = (
x

pr
+ 1)φ0. (22)

The dimensionless fluide force at a point located between the mobile cylinder (x = 0) and
the immobile one, upstream of the moving tube (x = −pr), is then given as,

F ∗
φ(x) = F ∗

0 cos(ω∗ t∗ + φ(x)) = F ∗
0 cos(ω∗ t∗ + ( x

pr
+ 1)φ0)

=
F ∗
0

s∗0

[
s∗ cos(( x

pr
+ 1)φ0) +

ṡ∗

ω∗ sin(( x
pr

+ 1)φ0)
]
,

(23)

where F ∗
0 is the dimensionless magnitude of the fluid pressure.

We assume that the fluid force acting on the moving cylinder, is dependent only on the flow
upstream the cylinder, until the immobile tube. To take into account this dependency,
the sum over the interval [−pr, 0] of the force F ∗

φ(x) is considered. The hydrodynamic
force F∗

φ (eq. 21) is then given as,

F∗
φ =

∫ 0

−pr
F ∗
φ(x) dx

=
pr F ∗

0

φ0 s∗0

[
sin(φ0) s

∗ + 1
ω∗ (1− cos(φ0)) ṡ

∗] , (24)
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As the interest of the model is to predict the dynamic instability threshold of the moving
tube, only the damping part of F∗

φ is then taken into account. The model of the total
hydrodynamic damping D (eq. 19), is then given as,

D = 2Sc+ (pr − 1)hur + C − pr
φ0 s∗0 ω

∗ (1− cos(φ0))F
∗
0 , (25)

where the damping due to the phase shift between the tube displacement and the fluid
load, is given as a following model,

Dφ = − pr
φ0 s∗0 ω

∗ (1− cos(φ0))F
∗
0 . (26)

The values of φ0 and F ∗
0 must be estimated.

Estimation of φ0 The non-dimensional time relevant to the transient behaviour of an
incompressible flow with finite fluid inertia can be shown to be [9, 20],

t∗ =
up

pc
t . (27)

Thus the real time lag between the movement of the cylinder and the resultant movement
of the streamline is measured in units time constant [9],

t̃ =
pc
up

. (28)

In this study, the phase lag φ0 between the fluid force and the cylinder displacement is
estimated as,

φ0 = ω t̃ =
ω pc
up

=
ω∗ pr
upr

, (29)

or equivalently as,

φ0 =
ω∗ (pr − 1)

ur

. (30)

Estimation of F ∗
0 As a first approximation, let us consider a stream tube bounded at

each side by a streamline, assumed tangent to two adjacent cylinders (dash lines), as
shown in figure (5).
The length of the stream tube being the center to center distance pc and its width is pc−d.
The inlet flow velocity in the stream tube is the pitch velocity up. The gray cylinder being
mobile, it is assumed that the fluid pressure F ∗

0 is proportinal to the tube displacement
magnitude s∗0. It is given in dimensional form as,

F0 = f 2
0 m0 F

∗
0 =

1

2
ρ u2

p

s0
d
, (31)
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Figure 5: Stream tube in normal square cylinder arrangement.

The dimensionless magnitude of the fluid pressure is then given, as a function of a pitch
reduced velocity, as,

F ∗
0 =

s∗0
2α0

u2
pr , (32)

or equivalently, as a function of a reduced velocity, as,

F ∗
0 =

s∗0
2α0 (1− p−1

r )2
u2
r . (33)

The following phase lag model of the damping term Dφ, given in equation (26), is then
derived by considering the equations (29) and (32),

Dφ(upr) = − 1

8π2 f∗2 α0

(
1− cos

(
2 π f ∗ pr

upr

))
u3
pr , (34)

or equivalently, by considering the equations (30) and (33),

Dφ(ur) = − 1

8 π2 f ∗2 α0 (1− p−1
r )3

(
1− cos

(
2 π f ∗ (pr − 1)

ur

))
u3
r , (35)

where f ∗ is the non-dimensional natural tube frequency in still fluid, obtained from po-
tential flow model.

The total hydrodynamic damping is then given as a function of the variable upr. It can
be expressed as a fluid-structure parameters-depending function as,

D = HSc,f0,f,pr,α0(upr) , (36)

or equivalently as a function of the variable ur,

D = H̃Sc,f0,f,pr,α0(ur) (37)

The function H is evaluated for different values of the fluid-structure parameters given
in table (1). They represent an experimental data given in [13]. m being the total mass,
including the hydrodynamic mass.
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Case no pr d (mm) m0 (kg/m) f0 (Hz) ξ0 (%) m (kg/m) f (Hz) Sc upc/f0 d

1 1.42 19.05 0.72 15.2 0.64 1.1 12.3 1.89E-1 2.56
2 1.42 19.05 0.72 25 0.61 1.1 20.2 2.78E-1 3.77
3 1.42 19.05 0.72 30 0.74 1.1 24.3 2.29E-1 4.15
4 1.5 25.4 0.607 25.5 0.22 1.257 16.9 1.07E-1 2.45
5 1.33 25.4 0.607 24.6 0.92 1.29 16.2 3.39E-1 2.09

Table 1: Considered cases [13]

The figure (6) shows the behaviour of the function H for the fluid-structure parameters
corresponding to the case 1 of table (1). First, the function is positive and increasing until
it reaches its maximum. Then the function decreases to zero and becomes negative. The
function has a unique root which corresponds to the value of the reduced pitch velocity
upr, for which the total damping D is zero and from which it becomes negative. This
is the critical reduced pitch velocity uprc before the tube dynamic instability occurrence.
The behaviour of the function H is the same for all other cases of table (1).
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Figure 6: Effective damping versus pitch reduced velocity.

4 NUMERICAL RESULTS

Figure 7: Computational domain.
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Consider a bundle of 25 tubes in normal square arrangement, immersed in a uni-
form fluid flow of mass density ρ = 1000 kg/m3 and kinematic viscosity coefficient
ν = 10−6 m2/s. The middle tube T0 is in transverse motion, whereas the others are im-
mobile (Figure 7). The problem (2) is solved by using the finite elements code Castem,
to compute the tube’s added mass ma and natural frequency f in still fluid.

4.1 Validation of the model

The figure (8) shows the critical reduced pitch velocities obtained from the proposed
model (equation 34) for various Scruton numbers corresponding to the cases given in
table (1). A comparison to experimental results given by [13], Connors model [7], with
fluidelastic instability constants K = 3 and b = 0.5, and Gorman model [8], with K = 3.3
and b = 0.5, is performed.
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0
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2πξm / ρd2

u
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f 0d

 

 

Pettigrew 1991 (expe)   
Connors K=3, b=0.5
Gorman K=3.3, b=0.5
Phase lag model

Case 4 Case 1 Case 3 Case 2 Case 5

Figure 8: Comparison between theoretical models and experimental results.

The results obtained from the phase lag model (equation 34) are close to the experimental
results, with deviations varying from 18.47% (for the case 5) to 34.5% (for the case 4). It is
shown that the predictions obtained by the phase lag model are more accurate than those
obtained by Connors and Gorman models, with the used fluidelastic instability constants.
The results given by the phase lag model are encouraging at this stage but need to be
validated further by considering more cases.

The results presented in the figure (8) are obtained by using experimental values of fluid-
structure parameters given in [13]. The same parameters can be obtained by solving the
coupled problem in potential flow (equations 2 and 3).

The figures (9, 10 and 11) show respectively the total tube mass, tube frequency in still
fluid and total Scruton number for the considered cases (Table 1). For each case, the
experimental and potential flow results are presented. It should be noted that the po-
tential flow model allows, in most of the cases, to compute with a good accuracy the
fluid-structure parameters. For the total mass, the deviations vary from 1% (for the three
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Figure 9: Total tube mass. Potential flow and experimental results.
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Figure 10: Tube frequency. Potential flow and experimental results.

first cases) to 2.56% (for the fifth case). For the natural frequency, the deviations vary
from 0.32% (for the first case) to 5.86% (for the fourth case). For the total Scruton num-
ber, the deviations vary from 4.67% (for the fourth case) to 29.28% (for the second case)
and 46.28% (for the fifth case).

The phase lag model (equation 34) can be used to predict the critical velocities, before
dynamic tube instability occurrence, by considering the fluid-structure parameters derived
from potential flow model or those obtained from experimental data. The figure (12) shows
the comparison between the results obtained by the model in these two cases. They are
also compared to experimental results given by [13].
It is shown that the results remain consistent when the experimental or potential flow
values of the parameters are considered by the model. It should be noted that the diviation
between the predicted critical velocities by the phase lag model is higher in the case 5
(Table 1). This is probably due to the bad estimation of the Scruton number in this case
(Figure 11).

4.2 Dynamic instability analysis of the tube

The dynamic stability of the mobile tube in the case 1 (Table 1) is analysed by using
the potential flow model enhanced by the phase lag model (equation 34). The critical
reduced pitch velocity obtained in this case is uprc = 3.194. It corresponds to the critical
reduced velocity urc = (1− p−1

r )uprc = 0.9447 (eq. 17). The displacement of the tube is
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Figure 11: Total Scruton number. Potential flow and experimental results.
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Figure 12: Critical reduced pitch velocity. Potential flow and experimental results.

computed for three reduced velocity values : ur = urc, ur = 0.8 < urc and ur = 1 > urc.
The results are presented in figure (13). As expected, it is shown that for ur = urc the
amplitudes of tube oscillations remain constant in time because of a zero total damping.
The tube is then marginally stable. For ur = 0.8 less than urc, the total damping is
positive and the amplitudes of tube oscillations decreases. The tube is then stable. For
ur = 1 greater than urc, the total damping is negative and the amplitudes of the tube
oscillations increases. The tube is then dynamically unstable. These conclusions are in
agreement with the phase trajectories presented in figure (14).
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Figure 13: Displacement of the tube in case 1 for ur = urc, ur < urc and ur > urc.
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Figure 14: Phase trajectories of a tube in case 1.

5 CONCLUSION

A simple model is proposed to analyse a fluidelastic stability of square cylinder arrange-
ment in cross flow. It is based on a potential flow model enhanced by a model describing
the phase difference between the fluid force and tube displacement. The viscous and fluid
velocity-dependent damping terms are also taken into account by the model. The phase
lag model gives rise to a parameters-depending function of a variable ur (reduced velocity).
The parameters being the fluid-structure parameters such as mass-damping ratio, pitch
ratio, frequency,... It is shown that the function has a unique root which corresponds to
the critical reduced velocity before dynamic instability occurrence. The model is tested
for several cases for which experimental results are available. The results are discussed
and compared to reference data.
It is found that the phase lag model gives a good enough prediction of the reduced ve-
locity threshold for the fluidelastic dynamic instability of normal square tube bundle in
cross flow. The obtained results are close to existing results from experiments or other
classical models. A single flexible tube behaviour, in transverse small amplitude motion,
is then analysed. As expected, the tube is marginally stable, with constant amplitude, for
a flow velocity equal to the predicted critical velocity. It becomes stable, with decreasing
amplitude, for a fluid velocity less than the critical velocity. For a fluid velocity greater
than the critical velocity, the fluidelastic dynamic instability occurs. The amplitude of
tube motion increases and the tube is going to be unstable.
The proposed theoretical phase lag model is easy to implement. The results are fast
obtained and are encouraging at this stage, but need further validations.
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