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Abstract. The analysis of titles and abstracts of scienpfiblications has been the focus of
studies of several works that aim to understand areathe main interests for research groups
and certain areas of research. This analysis bexomportant because it is possible to
analyze research topics being studied and whichtrerefocus of interest. In this work, a

proposal for analysis of keywords from scientifisbpcations using techniques of social

network analysis is performed. For this, all keyasof the publications under review are

inserted into a graph with a click, and after thastruction of the entire graph and application
of metrics, diverse information like connected wgrthe relationship between words and
distance between words can be obtained .

1 INTRODUCTION

The graphs or networks are powerful tools thatvallbstractions encode relationships
between pairs of objects, in which vertices represbjects and edges the relationships. In
some cases the vertices and edges correspond se@hgbjects in the real world, in others,
the vertices are real objects while edges corrasporntangible relationships, and there are
still cases where vertices and edges are pureaghstrs [1].

In transport networks, for example, the route ma@duby an air carrier naturally forms a
graph where the vertices are airports, and thees isdge between two vertices if there is a
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direct flight between two airports. Already in comnication networks, a set of computers
connected by a communication network can be modakea graph, where each vertex
represents a computer and edges represent phgsioactions between them [1].

Among the various types of networks, there areatamtworks. A social network is a set
of people or groups who have some kind of relahgnbetween them [2].

In Freire [3], discloses that relationships betw@eople can be friendship, kinship or
collaboration (e.g., in an article co-authors)alaocial network of friendship, the relationship
between two people can represent a friendship leetvihem. In a network of kinship
relationships between people can indicate that®aple belong to the same family.

In the scientific domain, an example of a sociaiwoek is the scientific collaboration
network that is observed as a graph in which thiBoes correspond to the authors of specific
scientific publications and the lines or edges egpond to co-authorship relationship. In this
type of network, the edges mayor may not be wetjhtee addition of weight represents the
number of joint papers in which the authors coreetdby the edge under analysis have
participated.

In recent years, in addition to scientific prodaaoti there has been a steady growth in the
study of networks in relation to various discipbneanging from computer science and
communications to sociology and epidemiology.

A network can be characterized as a graph thatisisnsf a set of nodes (vertices) and
links (edges) between the nodes. These links cagitber directed or not directed, and can
optionally have an associated weight. Many, perimapst, natural phenomena can usually be
described in terms of a network. The brain may haracterized as a network of neurons
connected by synapses. The Internet is also an@&anh an important network for society
today.

The abovementioned topics have been studied byaeesearchers; however, it was only
recently that the analysis of networks has becamiengortant area of research. This is partly
due to the advancement of computers. Computers &iaeel in the empirical study of real
networks, and have enabled researchers from difféiedds to conduct technical analyses of
large networks.

The strong relationship between the scientific Hredsocio-economic domain has led to a
growing interest in understanding the mechanismgolwed in scientific activities.
Furthermore, it has resulted in many studies thatyae the elements of its construction and
the characteristics of language and discourse umsedientific communication. The ratio of
collaboration between researchers has also bedyradd4].

For Stroele et al. [5], scientific social networkie specific types of social networks that
represent social interactions originating in thedmmic environment. These interactions
usually occur through the publication of scientificticles, academic guidelines and the
development of research projects. Various goals lemud to the study of scientific
collaboration networks, such as recommendation @k rtollaborators, intensifying the
collaboration, ranking of groups or individuals,identifying groups and their characteristics.

Alternatively, this paper aims to explore the kewu# of scientific publications for
generating networks enabling thus apply technigieesanalysis of social networks for
knowledge extraction.

Techniques like to find under way and us with aatge degree of influence are used in
order to identify those most impactful and influahtamong the words that make up the
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network.

2 RELATED WORK

With increasingly fierce competition among orgatimas and research institutions, it
becomes important for members to discover potentdbborators in order to leverage the
scientific production. Recent studies show thaeaesh groups with a well-connected social
network science tend to be more productive [6,7].

Networks of co-authorship of a community can rewetdresting facts about them such as
which groups collaborate better, the intensity efationships between authors, or which
authors work with a greater degree of collaboratidme study of networks of co-authorship
can also be used to compare the patterns of codabo between different scientific
communities [8].

Canibano and Bozeman [9] have suggested that thieldum vitae method can be used as
a sufficiently comprehensive source of information academic research, and that its
usefulness has been widely explored from 2000. Mewefew studies have investigated
the use of curricula for conducting social netwarkalysis, whereas several others have
analyzed co-authorship and the effects of scientifollaboration on the career of the
researcher [10].

The study by Petersen et al. [11] highlights faxtbiat are of great importance to academic
success in scientific networks. These factors oheline abundance of scientific literature that
enhances the attractiveness and the size of fujppertunities for employees, and the co-
author collaboration network. In view of this, & evident that further study is necessary in
order to understand and analyze how scientificabaltation happens as well as to design new
tools aimed at boosting scientific production.

Other proposals for social network analysis reseatan be seen in [12-17]. These
proposals are based on the potential for miningyalization, and structure analysis of social
networks of researchers, institutions, groups, thedatic research in a particular area, from
their scientific productions — especially scholaalyicles produced by the researchers.

In the work of Cataldi et al. [18], they recognizes primary role of Twitter and we
propose a novel topic detection technique that pierto retrieve in real-time the most
emergent topics expressed by the community. Rirstextract the contents (set of terms) of
the tweets and model the term life cycle accordng novel aging theory intended to mine
the emerging ones. A term can be defined as engeifinfrequently occurs in the specified
time interval and it was relatively rare in the tpddoreover, considering that the importance
of a content also depends on its source, we andhgeocial relationships in the network
with the well-known Page Rank algorithm in orderdtermine the authority of the users.
Finally, they leverage a navigable topic graph Wwhsonnects the emerging terms with other
semantically related keywords, allowing the detactof the emerging topics, under user-
specified time constraints. They provide differease studies which show the validity of the
proposed approach. Figure 1.
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Figure 1. The size of the nodes highlights their importamcthe considered community. [18]

In Zhu et al. [19], based on the network compriséd 11,444 keywords of library and
information science that are extracted from Scopns, taken into consideration the major
properties of average distance and clustering iooefts, the present authors, with the
knowledge of complex network and by means of catouh, reveal the small-world effect of
the keywords network. On the basis of the keywarelsvork, the betweenness centrality is
used to carry out a preliminary study on how taedethe research hotspots of a discipline.
This method is also compared with that of detectesgarch hotspots by word frequency.

3 DEVELOPMENT

Data from the CNPq Lattes Platform were used tayce this work. The Lattes Platform
was conceived to integrate the information systefiBrazilian federal agencies, optimizing
the Science and Technology (S&T) management prdoassthe standpoint of both the user
as well as promotion agencies and institutionsdocation and research. [20]

The selection of the Lattes Platform for extracti®nelated to it being extremely rich. This
is because it deals with the integration of scfentiata, both curricular and institutional in
the S&T field, recording academic data and sciengfroduction from researchers and
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institutions, allowing the researchers themsehesigdate the information. Currently, t
Lattes Platform includes approximately 3 milliomaoeded curricula vita

Several papers for scidgfit data analysis have explored the Lattes Platfas a primar
source of information [21-27]

In Dias et al. [20] paper, the whole process ofaxtion and data integration is divid
into three main parts: Extraction, Processing, ¥isdialization (Fiure 2). However, for th
purpose of our study, only the results of the etiba step that have the details of
curriculum and the subject of the research studgwsed.3.  Title

The title should be written centered, in 14pt, lieté Roman, all catal letters. It shouls
be single spaced if the title is more than one lomg).

Extrai Extrai Extrai Grupos Extrai Linhas Extrai Cursos Extrai Extrai Testes
Identificadores Curriculos de Pesquisa de Pesquisa Reconhecidos Qualis e Dissertagbes

Hh & & & Hh & &

ES B0 E

1

Figure 2: Framework for Extraction Lattes Platform. [20].

The data extraction process in the framework bewitts the acquisition of identifiers fc
the Lattes curricula that have been obtained with auisipn on the platform. Thes
identifiers are then stored locally. The acquisitstrategy begins with a request that resul
a list containing all the identification codes bétregistered currica.

Subsequently, a crawler collects the identifierd generates a list of codes that will all
access to the curriculum of each individual redearéor extraction. All the extracted Lati
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curricula are stored in the eXtensible Markup laggi(XML) format.

Subsequently, each publication registered in aiaua are analyzed and their keywo
form a clique that is inserted in the graph byjthéaposition of key words. Given this, eve
published study it is then inserted into the graphl all titles are analyzed and the grapl
finalized. Figure 3.
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Figure 3:Example Network Keywords

With the constructed graph, where nodes representisvand edges correspond
occurrence of two or more words in the same putainait is possible to obrve those most
frequent words (larger nodes) and the words apipgather more often (more sparse ed:

Given this, it is possible to visually identify theost relevant words and their links to e
group analyzed curricula. Thus, it is easily pde to extract what are the topics (keywor
that have major influences in the analyzed netw

4 RESULTS

With the adoption of the metric social network gsad, you can identify features that :
not visually identified. These features are impairtbecause they can reveal valua
information with the aim of boosting research base@&merging theme
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Sample results of these metrics are matrix prasgrhe analysis of the frequency o
particular word for each author, the distance matnat represents the distance betwee
given word and another in the graph under consiiderand also the matrix of neighbors
common that allows see the words that are linket thie plumb set of words. Table

Table 1: Matrix of neighbors in common

acreditaca-hospital acupuntur acust adaptaca aderenc adesa
aco 0 0 0 0 0 0
aco-afirm 0 0 0 0 0 0
acreditaca-hospital 0 1 0 0 0 0
acupuntur 1 0 0 0 0 0
acust 0 0 0 0 0 0
adaptaca 0 0 0 0 0 0
aderenc 0 0 0 0 0 0
adesa 0 0 0 0 0 0
administraca 0 0 0 0 0 0
adoca-tecnolog 0 0 0 0 0 0

These matrix are important before their resultsval@rforming work on various resear
area as classification and recommendation systetnsh aims to classify the words have
even recommend words that can work together orwewls that a specific searcher might
consider in their future resear

Beyond the arrays with different metrics, otherpiig can be generated spara netv
analysis considering key words. Figur
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Figure 4: keyword network
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Figure 4 shows a network of key words and tlrelationships, these relationships wh
are represented by words that were used in a serole.arhe thickness of the edges indic
the number of publications in which the words appéan the same publication. Given tt
one realizes what are the mls used most often and which words are not usgether in the
same work.

Another example of a network that can be generatdéte network of Figure 5. In th
network, nodes represent authors and edges betiveem authors indicate keywords that
authors used in common. Therefore, it is possibledémtify researchers who have work
with the same words.

e - .‘s\\ -l.
Y ""%m?;é%‘%\-\“
0 ‘ga-.-w'ém’é! I %71&
;e? s
<

Figure5: Network of authors per keywords

5 CONCLUSIONS

With analysis of keywords from scientific publicais, one can extract various relev
information that may assist in the understandingvbich research topics are evolving ¢
thus direct research to topics that are evol'

The method propesl in this paper analyzes all key words that makeaypublicatior
constructing a graph of keywords, and after thestotion of the metrics graph of the so«
network analysis are applied and information reh\ta understanding these networks cail
obtained.
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Given this, it is possible to obtain knowledge at@search topics in which certain groups
of researchers have directed their efforts and Hwge themes have been investigated in
several research areas.
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