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Abstract. In this paper, the detailed derivation and validation study of a recently developed 

three dimensional preconditioning formulation is presented.  
 

 

1 INTRODUCTION 

In recent years, beyond various different approaches, preconditioning methods gained 

increasing popularity for all speed flow solver development studies. Preconditioning methods 

employ special matrices which enhance the convergence behaviour when pre-multiplied with 

the time derivative terms. In literature, the pioneering preconditioning method is recognized to 

be the Artificial Compressibility Method (ACM) due to Chorin [1]. The first systematic 

approach on preconditioning methods is later conducted by Turkel [2] and a family of 

preconditioners are introduced. After these initial studies, several improvements and extensions 

are further developed. References [3] and [4] provide detailed review of the current 

preconditioning methods. 

In the present preconditioning method, the Euler equations are non-dimensionalized similar 

to the pressure-splitting method of Merkle and Choi [5]. Furthermore, in addition to pressure, 

total energy is also split in a similar manner. In contrast to the preconditioning methods 

developed earlier, in the current approach the conservation of energy equation is preconditioned 

to enforce the divergence free constraint on the velocity field even at the limiting case of 

incompressible, zero Mach number flows. 

The novel preconditioning method developed by the authors is already applied to 2-D flows 

[6]. In this study, the preconditioning method is extended to 3-D flows, it is validated and the 

preconditioned solutions are compared against non-preconditioned solutions of Euler equations 

on ONERA M6 test case for various Mach numbers for a performance assessment. 

mailto:obas@ae.metu.edu
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2 NON-DIMENSIONALIZATION 

Non-dimensionalization is a standard process to reveal the general characteristics and 

relative importance of different terms of partial differential equations. In the non-dimensional 

Euler equations, two major problems, namely cancellation and eigenvalue disparity, are 

observed with the proper non-dimensionalization parameters. In this study the following non-

dimensionalization is employed: 

𝜌∗ =
𝜌

𝜌∞
  𝑢∗ =

𝑢

𝑈∞
  𝑝∗ =

𝑝

𝜌∞𝑈∞
2 − 𝑃𝑟   (𝜌𝑒𝑡)

∗ =
(𝜌𝑒𝑡)

𝜌∞𝑈∞
2 − (𝜌𝑒𝑡)𝑟 

𝑥∗ =
𝑥

𝑥𝑟
 𝑡∗ =

𝑡𝑈∞

𝑥𝑟
     (1) 

Where, 

𝑃𝑟 =
1

𝛾𝑀∞
2  (𝜌𝑒𝑡)𝑟 =

1

𝛾(𝛾−1)𝑀∞
2  

The non-dimensional conservation equations then become 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0 

𝜕(𝜌𝑢)

𝜕𝑡
+

𝜕(𝜌𝑢2 + 𝑝)

𝜕𝑥
+

𝜕(𝜌𝑢𝑣)

𝜕𝑦
+

𝜕(𝜌𝑢𝑤)

𝜕𝑧
= 0 

𝜕(𝜌𝑣)

𝜕𝑡
+

𝜕(𝜌𝑣𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣2 + 𝑝)

𝜕𝑦
+

𝜕(𝜌𝑣𝑤)

𝜕𝑧
= 0 

𝜕(𝜌𝑤)

𝜕𝑡
+

𝜕(𝜌𝑤𝑢)

𝜕𝑥
+

𝜕(𝜌𝑤𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤2 + 𝑝)

𝜕𝑧
= 0 

𝜕(𝜌𝑒𝑡)

𝜕𝑡
+

𝜕 (𝑢 (𝜌𝑒𝑡 + 𝑝 +
1

(𝛾 − 1)𝑀∞
2 ))

𝜕𝑥
+

𝜕 (𝑣 (𝜌𝑒𝑡 + 𝑝 +
1

(𝛾 − 1)𝑀∞
2 ))

𝜕𝑦
+

𝜕 (𝑤 (𝜌𝑒𝑡 + 𝑝 +
1

(𝛾 − 1)𝑀∞
2 ))

𝜕𝑧
= 0 

(2) 

The corresponding non-dimensional free-stream conditions are given below where asterisks 

are dropped for notational convenience. 

𝜌∞ = 1 𝑈∞ = 1  𝑝∞ = 0  (𝜌𝑒𝑡)∞ = 0.5 

It should be noted that 
1

(𝛾−1)𝑀∞
2  term grows and become dominant as the free stream Mach 

number decreases. This problem is known as “cancellation problem” in the literature. 

The present non-dimensionalization also leads to the modified speed of sound given by 

𝑐 = √
𝛾𝑝

𝜌
+

1

𝜌𝑀∞
2

 

It should also be noted that as free stream Mach number goes to zero, the speed of sound 

goes to infinity which increases the differences between eigenvalues unboundedly. This 

problem is named as “eigenvalue disparity”. 
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3 PRECONDITIONING 

The present preconditioning method firstly relaxes the time derivative terms in both the 

conservation of mass and energy equations. It is achieved simply by multiplying the spatial 

derivative terms by 𝑀∞
2  of these two equations. 

𝜕𝜌

𝜕𝑡
+ 𝑀∞

2
𝜕(𝜌𝑢)

𝜕𝑥
+ 𝑀∞

2
𝜕(𝜌𝑣)

𝜕𝑦
+ 𝑀∞

2
𝜕(𝜌𝑤)

𝜕𝑧
= 0 

𝜕(𝜌𝑢)

𝜕𝑡
+

𝜕(𝜌𝑢2 + 𝑝)

𝜕𝑥
+

𝜕(𝜌𝑢𝑣)

𝜕𝑦
+

𝜕(𝜌𝑢𝑤)

𝜕𝑧
= 0 

𝜕(𝜌𝑣)

𝜕𝑡
+

𝜕(𝜌𝑣𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣2 + 𝑝)

𝜕𝑦
+

𝜕(𝜌𝑣𝑤)

𝜕𝑧
= 0 

𝜕(𝜌𝑤)

𝜕𝑡
+

𝜕(𝜌𝑤𝑢)

𝜕𝑥
+

𝜕(𝜌𝑤𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤2 + 𝑝)

𝜕𝑧
= 0 

𝜕(𝜌𝑒𝑡)

𝜕𝑡
+

𝜕 (𝑢 (𝑀∞
2 𝜌𝑒𝑡 + 𝑀∞

2 𝑝 +
1

(𝛾 − 1)
))

𝜕𝑥
+

𝜕 (𝑣 (𝑀∞
2 𝜌𝑒𝑡 + 𝑀∞

2 𝑝 +
1

(𝛾 − 1)
))

𝜕𝑦

+

𝜕 (𝑤 (𝑀∞
2 𝜌𝑒𝑡 + 𝑀∞

2 𝑝 +
1

(𝛾 − 1)
))

𝜕𝑧
= 0 

(3) 

At the limiting case of zero free-stream Mach number, the equation set becomes 

𝜕𝜌

𝜕𝑡
= 0 

𝜕(𝜌𝑢)

𝜕𝑡
+

𝜕(𝜌𝑢2 + 𝑝)

𝜕𝑥
+

𝜕(𝜌𝑢𝑣)

𝜕𝑦
+

𝜕(𝜌𝑢𝑤)

𝜕𝑧
= 0 

𝜕(𝜌𝑣)

𝜕𝑡
+

𝜕(𝜌𝑣𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣2 + 𝑝)

𝜕𝑦
+

𝜕(𝜌𝑣𝑤)

𝜕𝑧
= 0 

𝜕(𝜌𝑤)

𝜕𝑡
+

𝜕(𝜌𝑤𝑢)

𝜕𝑥
+

𝜕(𝜌𝑤𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤2 + 𝑝)

𝜕𝑧
= 0 

𝜕(𝜌𝑒𝑡)

𝜕𝑡
+

1

(𝛾 − 1)

𝜕𝑢

𝜕𝑥
+

1

(𝛾 − 1)

𝜕𝑣

𝜕𝑦
+

1

(𝛾 − 1)

𝜕𝑤

𝜕𝑧
= 0 

(4) 

In this preconditioned equation set, the conservation of mass equation diminishes whereas 

the conservation of energy equation becomes bounded and provides the divergence free velocity 

constraint on low Mach number flows. However, it is observed that the eigensystem of the 

equation set (3) is too complex to be useful. Time derivative of the ideal gas equation for 

incompressible flows is employed to obtain ACM formulation and benefit from its rather simple 

eigensystem. 

1

(𝛾 − 1)

𝜕𝑝

𝜕𝑡
= (

𝜕(𝜌𝑒𝑡)

𝜕𝑡
− 𝑢

𝜕(𝜌𝑢)

𝜕𝑡
− 𝑣

𝜕(𝜌𝑣)

𝜕𝑡
− 𝑤

𝜕(𝜌𝑤)

𝜕𝑡
) 

(5) 
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When equation (5) is considered, it is observed that subtraction of (𝑢
𝜕(𝜌𝑢)

𝜕𝑡
+ 𝑣

𝜕(𝜌𝑣)

𝜕𝑡
+ 𝑤

𝜕(𝜌𝑤)

𝜕𝑡
) 

term from the conservation of energy equation recovers the original ACM formulation exactly 

at the incompressible flow limit. 

The resulting preconditioning formulation becomes 

  
𝜕𝑄

𝜕𝑡
+ 𝛤 (

𝜕𝐸

𝜕𝑥
+

𝜕𝐹

𝜕𝑦
+

𝜕𝐺

𝜕𝑧
) 

𝑄 =

(

 
 

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝑒)

 
 

 

 𝐸 =

(

  
 

𝜌𝑢

𝜌𝑢2 + 𝑃
𝜌𝑢𝑣
𝜌𝑢𝑤

𝑢 (𝜌𝑒 + 𝑃 +
1

(𝛾−1)𝑀∞
2 ))

  
 

 𝐹 =

(

  
 

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑃
𝜌𝑣𝑤

𝑣 (𝜌𝑒 + 𝑃 +
1

(𝛾−1)𝑀∞
2 ))

  
 

 𝐺 =

(

  
 

𝜌𝑤
𝜌𝑤𝑢
𝜌𝑤𝑣

𝜌𝑤2 + 𝑃

𝑤 (𝜌𝑒 + 𝑃 +
1

(𝛾−1)𝑀∞
2 ))

  
 

 

 

𝛤 =

[
 
 
 
 
𝑀∞

2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 (1 − 𝑀∞

2 )𝑢 (1 − 𝑀∞
2 )𝑣 (1 − 𝑀∞

2 )𝑤 𝑀∞
2 ]
 
 
 
 

 

(6) 

4 FLOW SOLVER 

The Mach uniform preconditioner developed is implemented in a three dimensional parallel 

in-house flow solver. The flow solver employs Runge-Kutta temporal discretization scheme 

and the first order Roe’s approximate Riemann solver for the convective flux evaluations. The 

Roe fluxes are evaluated with the general formula 

1

2
(𝐹𝐿 + 𝐹𝑅 − 𝑇|𝜆|𝑇−1Δ𝑄) 

Where 𝐹𝐿 and 𝐹𝑅 are left and right state fluxes respectively. 𝜆 and 𝑇 are eigenvalues and the 

eigenvectors of the preconditioned jacobian matrix respectively. 

𝜆 =

[
 
 
 
 

𝑢
𝑢

𝑀∞
2 𝑢

𝑢 − 𝑐
𝑢 + 𝑐]
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𝑇 =

[
 
 
 
 
 
 
 
 

0 0 1 𝑀∞
2 𝑀∞

2

0 0 𝑢 𝑢 − 𝑐 𝑢 + 𝑐

𝑤 𝑤 0
𝑣𝐹

𝑐
−

𝑣𝐺

𝑐

𝑣 −𝑣 0
𝑤𝐹

𝑐
−

𝑤𝐺

𝑐

2𝑣𝑤 0
𝑢2 − 𝑣2 − 𝑤2

2
+

(𝑀∞
2 − 1)𝑢2

𝛾 − 1
𝐷 − 𝐸 𝐷 + 𝐸

]
 
 
 
 
 
 
 
 

 

𝑇−1

=

[
 
 
 
 
 
 
 
 
 
 −

(𝑣2 + 𝑤2)𝑞𝑡(𝛾 − 1)

4𝑣𝑤𝑐2

𝑢(𝑣2 + 𝑤2)𝐻

2𝑣𝑤𝑐2

(𝛾 − 1)(𝑣2 + 𝑤2) + 𝑐2

2𝑤𝑐2

(𝛾 − 1)(𝑣2 + 𝑤2) + 𝑐2

2𝑣𝑐2
−

(𝛾 − 1)(𝑣2 + 𝑤2)

2𝑣𝑤𝑐2

−
(𝑣2 − 𝑤2)𝑞𝑡(𝛾 − 1)

4𝑣𝑤𝑐2

𝑢(𝑣2 − 𝑤2)𝐻

2𝑣𝑤𝑐2

(𝛾 − 1)(𝑣2 − 𝑤2) + 𝑐2

2𝑤𝑐2

(𝛾 − 1)(𝑣2 − 𝑤2) − 𝑐2

2𝑣𝑐2
−

(𝛾 − 1)(𝑣2 − 𝑤2)

2𝑣𝑤𝑐2

𝐽

2𝐹𝐺
−

𝑀∞
2 (𝛾 − 1)𝑢

𝐹𝐺
−

𝑀∞
2 (𝛾 − 1)𝑣

𝐹𝐺
−

𝑀∞
2 (𝛾 − 1)𝑤

𝐹𝐺

𝑀∞
2 (𝛾 − 1)

𝐹𝐺
(𝛾 − 1)𝑞𝑡 + 2𝑢𝑐

4𝑐𝐹
−

𝐻𝑢 + 𝑐

2𝑐𝐹
−

(𝛾 − 1)𝑣

2𝑐𝐹
−

(𝛾 − 1)𝑤

2𝑐𝐹

(𝛾 − 1)

2𝑐𝐹
(1 − 𝛾)𝑞𝑡 + 2𝑢𝑐

4𝑐𝐺

𝐻𝑢 − 𝑐

2𝑐𝐺

(𝛾 − 1)𝑣

2𝑐𝐺

(𝛾 − 1)𝑤

2𝑐𝐺
−

(𝛾 − 1)𝑤

2𝑐𝐺 ]
 
 
 
 
 
 
 
 
 
 

 

𝑞𝑡 = 𝑢2 + 𝑣2 + 𝑤2 

𝑐 = √
𝑀∞

2 𝛾𝑝 + 1

𝜌
+ (1 − 𝑀∞

2 )𝑢 

𝐷 =
𝑐2

(𝛾 − 1)
−

(𝑀∞
2 − 2)𝑞𝑡

2
+

(𝑀∞
2 − 1)𝑢2

(𝛾 − 1)
 

𝐸 = 𝑢𝑐 −
𝑢𝑣2(𝑀∞

2 − 1)

𝑐
−

𝑢𝑤2(𝑀∞
2 − 1)

𝑐
 

𝐹 = (𝑀∞
2 − 1)𝑢 + 𝑐 

𝐺 = (𝑀∞
2 − 1)𝑢 − 𝑐 

𝐻 = (𝑀∞
2 + 𝛾 − 2) 

𝐽 = 𝑀∞
2 (𝛾 − 1)𝑞𝑡 − 2𝑢2(𝑀∞

2 − 1) − 2𝑐2 

In this study, the following standard boundary conditions are employed. These boundary 

conditions are the same as the boundary conditions employed in ACM formulations. 

𝜌 = 𝜌∞ 𝜌𝑢 = 𝜌𝑢∞ 𝜌𝑣 = 𝜌𝑣∞ 𝜌𝑤 = 𝜌𝑤∞ p= 𝑝𝑒𝑥𝑡   for inflow 

𝜌 = 𝜌𝑒𝑥𝑡  𝜌𝑢 = 𝜌𝑢𝑒𝑥𝑡 𝜌𝑣 = 𝜌𝑣𝑒𝑥𝑡  𝜌𝑤 = 𝜌𝑤𝑒𝑥𝑡 p= 𝑝∞  for outflow 

5 RESULTS AND DISCUSSION 

5.1 Validation 

Transonic flow over ONERA M6 wing is selected for both validation and performance 

evaluation cases. ONERA M6 wing has a relatively simple geometry with no twist and a 

symmetrical airfoil. This test case is selected because of its wide usage as a standard test case 

for the CFD codes developed. Among various free stream Mach numbers and angle of attacks, 
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Test 2308 of reference [6] is selected where 𝑀∞ = 0.8395 and ∝= 3.06. 

For this purpose, a 3-D unstructured mesh with 447842 cells and 91418 nodes is generated 

and used. 

 

Figure 1: Computational mesh and pressure distribution for flow over ONERA M6 wing at 𝑀∞ = 0.8395 and ∝
= 3.06 

In Figure 2 the distribution of pressure coefficient over two different spanwise locations are 

compared against the experimental data. As expected, the preconditioned and non-

preconditioned solutions are the same at both stations and the inviscid flow prediction is in 

better agreement with the experimental data at station 
𝑦

𝑏
= 0.2. The disagreement at station  

𝑦

𝑏
=

0.95 is attributed to the viscous effects due to tip vortex. 

 

Figure 2: Pressure distribution on  
y

b
= 0.2 and  

y

b
= 0.95 for flow over ONERA M6 wing at 𝑀∞ = 0.8395 and 

∝= 3.06 
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5.2 Performance Evaluation 

After the validation of the formulation developed, its impact on the convergence 

characteristics is analyzed on a range of free stream Mach numbers from incompressible to 

transonic speeds. In all the cases, the CFL value is kept at its highest values while the solution 

stability is achieved. It is observed that, while maximum CFL values occur to be around 3 for 

all preconditioned cases, CFL values as low as 0.01 are needed for non-preconditioned 

solutions. The pressure coefficient distribution and the residual histories are presented in Figure 

3 to Figure 7 where 0.5m span location is selected for comparison. 

 

Figure 3: (a) Pressure distributions and (b) residual histories for flow over ONERA M6 wing at 𝑀∞ = 0.0 and 

𝑀∞ = 0.005 and ∝= 3.06 

 

Figure 4: (a) Pressure distributions and (b) residual histories for flow over ONERA M6 wing at 𝑀∞ = 0.1 and ∝
= 3.06 
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Figure 5: (a) Pressure distributions and (b) residual histories for flow over ONERA M6 wing at 𝑀∞ = 0.3 and ∝
= 3.06 

 

Figure 6: (a) Pressure distributions and (b) residual histories for flow over ONERA M6 wing at 𝑀∞ = 0.5 and ∝
= 3.06 

 

Figure 7: (a) Pressure distributions and (b) residual histories for flow over ONERA M6 wing at 𝑀∞ = 0.8395 

and ∝= 3.06 

It is observed from the results and residual graphs that the present preconditioning matrix 

has a comparable accuracy and convergence rate with non-preconditioned formulation for all 

flow conditions except 𝑀∞ = 0.005. Slight differences are attributed to reflecting boundary 

conditions. 
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At case 𝑀∞ = 0.005 condition, the non-preconditioned solution is obtained by employing a 

CFL value of 0.01 and a stable solution cannot be achieved as shown in Figure 3 whereas the 

preconditioned formulation do not exhibit any deterioration on convergence rate. 𝑀∞ = 0.005 is 

the smallest Mach number for which a non-preconditoned solution can be obtained. All of the 

preconditioned solution residuals are also given on Figure 8. This figure proves the Mach 

uniform convergence of preconditioned formulation up to 𝑀∞ = 0.5. 

 

Figure 8: Residual histories for flow over ONERA M6 at ∝= 3.06 

12 CONCLUSIONS 

In this study, the Mach uniform preconditioning method developed earlier is extended to 3-

D flows. The preconditioned equations provide stability and Mach uniform convergence 

characteristics for very low subsonic flows including zero free-stream Mach number. The 

developed 3-D formulation is validated for flow over ONERA M6 wing at several free stream 

Mach number flows and the instability of the compressible flow solvers at very low Mach 

numbers are successfully prevented. 
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