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Abstract. The paper deals with the analysis and numerical solution of the topology
optimization of system governed by the variational inequalities using the combined level
set and phase field rather than standard level set approach. Standard level set method
allows to evolve a given sharp interface but is not capable to genetrate holes unless the
topological derivative is used. The phase field method indicates the position of the inter-
face in a blurry way but is flexible in hole generation. In the paper two-phase topology
optimization problem is formulated in terms of the modified level set method and regular-
ized using Cahn-Hilliard based interfacial energy term rather than the standard perimeter
term. The derivative formulae of the cost functional with respect to the level set func-
tion is calculated. Modified reaction-diffusion equation updating the level set function is
derived. The necessary optimality condition for this optimization problem is formulated.
The finite element and finite difference methods are used to solve the state and adjoint
systems. Numerical examples are provided and discussed.

1 INTRODUCTION

Shape or topology optimization problems of systems governed by PDEs arise in many
applications. Examples include different branches of industry, biology or image processing
[1, 2, 3, 4]. The paper is concerned with the topology and/or shape optimization problem
for an elastic body in unilateral contact with a rigid foundation. The contact phenomenon
with Tresca friction is governed by the second order elliptic variational inequality [5, 6].
The structural optimization problem consists in finding such material distribution in a
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given design domain occupied by the body and/or the shape of its boundary that the
normal contact stress along the boundary of the body is minimized.

Shape and topology optimization problems are studied in literature both from analyt-
ical point of view as well as numerical. Many successful numerical methods have been
proposed to solve shape and topology optimization problems. For the review of these
methods see [3, 4]. Especially, Simple Isotropic Material Penalization metod, Evolution-
ary Structural Optimization approach [7] or topology derivative method [8] are the main
methods used to solve topology optimization problems. Recently the use of the level set
methods [9] and the phase field methods [7] has been proposed to solve the topology
optimization problems [4, 10, 11, 12, 13, 14, 15, 16, 17, 18]. In numerical algorithms of
structural optimization the level set method is employed for capturing the evolution of
the domain boundary on a fixed mesh and finding an optimal domain [1, 2]. The level
set method is a simple and versatile method to compute and analyze the motion of an
interface in two or three dimensions. While level-set methods have become an accepted
tool in structural topology optimization the use of phase field methods in this field has
not yet become popular. The topology optimization problem in multiphase setting can
be transformed further into a phase field problem where the optimal topology is char-
acterized as the steady state of the phase transition. Phase field models in the form of
Cahn-Hilliard or Allen-Hillard equations [7, 12, 13, 17, 19] have been first introduced in
metalurgy to describe phase separation in binary alloy systems. Next these approaches
have been used to provide mathematical models in different areas, including crack propa-
gation, image processing, tumor growth. Phase field models have many similarities with
the level set approach.

The paper is concerned with the analysis and numerical solution of the topology opti-
mization of an elastic contact problem with Tresca friction. The aim of the optimization
problem is to find such distribution of the material of the body in unilateral contact with
the rigid foundation to minimize normal contact stress. The combined level set and phase
field rather than standard level set approach is used. Two-phase topology optimization
problem is formulated in terms of the modified level set function. This problem is regular-
ized using Cahn-Hilliard interface energy term rather than the perimeter term. Derivatives
formulae of the cost functional with respect to the level set function are calculated. In-
terface evolution is governed by the modified gradient flow equation of reaction-diffusion
type. The necessary optimality condition for this optimization problem is formulated.
The numerical implementation issues are described. Numerical examples are provided
and discussed.

2 PROBLEM FORMULATION

Consider deformations of an elastic body occupying two–dimensional domain Ω with
the smooth boundary Γ (see Fig. 1). Assume Ω ⊂ D where D is a bounded smooth
hold–all subset of R2. The body is subject to body forces f(x) = (f1(x), f2(x)), x ∈ Ω.
Moreover, surface tractions p(x) = (p1(x), p2(x)), x ∈ Γ, are applied to a portion Γ1 of the
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Figure 1: Initial domain Ω.

boundary Γ. We assume, that the body is clamped along the portion Γ0 of the boundary
Γ, and that the contact conditions are prescribed on the portion Γ2, where Γi ∩ Γj = ∅,
i 6= j, i, j = 0, 1, 2, Γ = Γ̄0 ∪ Γ̄1 ∪ Γ̄2.

Let ρ = ρ(x) : Ω → R denote the material density function at any generic point x in
a design domain Ω. It is a phase field variable taking value close to 1 in the presence of
material, while ρ = 0 corresponds to regions of Ω where the material is absent, i.e. there
is a void. In the phase field approach the interface between material and void is described
by a diffusive interfacial layer of a thickness proportional to a small lenght scale parameter
ε > 0 and at the interface the phase field ρ rapidly but smoothly changes its value [7].
We require that 0 ≤ ρ ≤ 1. The ρ values outside this range do not seem to correspond to
admissible material distributions. The elastic tensor A of the material body is assumed
to be a function depending on density function ρ:

A = g(ρ)A0, A0 = {aijkl}2
i,j,k,l=1 (1)

and g(ρ) is a suitable chosen function [12, 7, 8].
We denote by u = (u1, u2), u = u(x), x ∈ Ω, the displacement of the body and by

σ(x) = {σij(u(x))}, i, j = 1, 2, the stress field in the body. Consider elastic bodies obeying
Hooke’s law, i.e., for x ∈ Ω and i, j, k, l = 1, 2

σij(u(x)) = g(ρ)aijkl(x)ekl(u(x)). (2)

We use here and throughout the paper the summation convention over repeated indices
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[5]. The strain ekl(u(x)), k, l = 1, 2, is defined by:

ekl(u(x)) =
1

2
(uk,l(x) + ul,k(x)), (3)

where uk,l(x) = ∂uk(x)
∂xl

. The stress field σ satisfies the system of equations in the domain

Ω [5]
−σij(x),j = fi(x) x ∈ Ω, i, j = 1, 2, (4)

where σij(x),j =
∂σij(x)

∂xj
, i, j = 1, 2. The following boundary conditions are imposed on

the boundary ∂Ω

ui(x) = 0 on Γ0, i = 1, 2, (5)

σij(x)nj = pi on Γ1, i, j = 1, 2, (6)

uN ≤ 0, σN ≤ 0, uNσN = 0 on Γ2, (7)

| σT |≤ 1, uT σT + | uT |= 0 on Γ2, (8)

where n = (n1, n2) is the unit outward versor to the boundary Γ. Here uN = uini and
σN = σijninj, i, j = 1, 2, represent the normal components of displacement u and stress
σ, respectively. The tangential components of displacement u and stress σ are given by
(uT )i = ui − uNni and (σT )i = σijnj − σNni, i, j = 1, 2, respectively. | uT | denotes the
Euclidean norm in R2 of the tangent vector uT .

2.1 Variational Formulation of Contact Problem

Let us formulate contact problem (4)-(8) in the variational form. Denote by Vsp and
K the space and the set of kinematically admissible displacements:

Vsp = {z ∈ [H1(Ω)]2 : zi = 0 on Γ0, i = 1, 2}, (9)

K = {z ∈ Vsp : zN ≤ 0 on Γ2}. (10)

H1(Ω) denotes Sobolev space of square integrable functions and their first derivatives
[5, 6]. [H1(Ω)]2 = H1(Ω)×H1(Ω). Denote also by Λ the set

Λ = {ζ ∈ L2(Γ2) : | ζ | ≤ 1}.
Variational formulation of problem (4)-(8) has the form: find a pair (u, λ) ∈ K × Λ
satisfying

∫

Ω

g(ρ)aijkleij(u)ekl(ϕ− u)dx−
∫

Ω

fi(ϕi − ui)dx−
∫

Γ1

pi(ϕi − ui)ds +

∫

Γ2

λ(ϕT − uT )ds ≥ 0 ∀ϕ ∈ K, (11)

∫

Γ2

(ζ − λ)uT ds ≤ 0 ∀ζ ∈ Λ, (12)
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i, j, k, l = 1, 2. Function λ is interpreted as a Lagrange multiplier corresponding to term
| uT | in equality constraint in (8) [5]. This function is equal to tangent stress along the
boundary Γ2, i.e., λ = σT|Γ2

.

2.2 Topology Optimization Problem

Before formulating a structural optimization problem for (11)-(12) let us introduce the
set Uad of admissible domains. Denote by V ol(Ω) the volume of the domain Ω equal to

V ol(Ω) =

∫

Ω

ρ(x)dx. (13)

Domain Ω is assumed to satisfy the volume constraint of the form

V ol(Ω)− V olgiv ≤ 0, (14)

where the constant V olgiv = const0 > 0 is given. In a case of shape optimization of
problem (11) - (12) the optimized domain Ω is assumed to satisfy equality volume con-
dition, i.e., (14) is assumed to be satisfied as equality. In a case of topology optimiza-
tion V olgiv is assumed to be the initial domain volume and (14) is satisfied in the form
V ol(Ω) = rfrV olgiv with rfr ∈ (0, 1) [8]. The set Uad has the following form

Uad = {Ω : E ⊂ Ω ⊂ D ⊂ R2 :

Ω is Lipschitz continuous, Ω satisfies condition (14)}, (15)

where E ⊂ R2 is a given domain such that Ω as well as all perturbations of it satisfy
E ⊂ Ω. The constant const1 > 0 is assumed to exist. The set Uad is assumed to be
nonempty. In order to define a cost functional we shall also need the following set M st of
auxiliary functions

M st = {η = (η1, η2) ∈ [H1(D)]2 : ηi ≤ 0 on D, i = 1, 2,

‖ η ‖[H1(D)]2 ≤ 1}, (16)

where the norm ‖ η ‖[H1(D)]2= (
∑2

i=1 ‖ ηi ‖2
H1(D))

1/2. Recall from [14, 15] the cost
functional approximating the normal contact stress on the contact boundary

Jη(u(Ω)) =

∫

Γ2

σN(u)ηN(x)ds, (17)

depending on the auxiliary given bounded function η(x) ∈ M st. σN and ηN are the normal
components of the stress field σ corresponding to a solution u satisfying system (11)-(12)
and the function η, respectively.

Consider the following structural optimization problem: for a given function η ∈ M st,
find a domain Ω? ∈ Uad such that

Jη(u(Ω?)) = min
Ω∈Uad

Jη(u(Ω)). (18)
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Adding to (15) a perimeter constraint PD(Ω) ≤ const1, where PD(Ω) =
∫
Γ
dx is a perime-

ter of a domain Ω in D [13, 14, 6] and const1 > 0 is a given constant the existence of an
optimal domain Ω? ∈ Uad to the problem (18) is ensured (see [12, 13, 6]).

3 SHARP INTERFACE APPROACH TO TOPOLOGY OPTIMIZATION

Sharp interface tracking models, joining the level set approach and the phase field
approach, are used in fluid dynamics governed by Navier-Stokes equations or in mod-
elling surface tension interface. Among others, to avoid singularities at the contact point
between the fluid and the wall hybrid interface evolution model has been used combin-
ing convective transport equation in the bulk domain and Cahn-Hilliard equation in the
vicinity of the interface. The numerical tests indicate the computational efficiency of the
hybrid model compared to plain phase field one.

The relation between level set and phase field approaches are studied among others in
[7, 18, 20]. Based on application of both models in Mumford-Shah functional minimization
for image registration and segmentation [20], it is stated that these models are well-known
due to their topological flexibility. Both approaches are very flexible and allow a wide
range of extensions for model-based matching, registration and segmentation, optical flow
with discontinuities, fluid flow. In these methodologies the process of splitting a curve
into several curves is a smooth one. However these two approaches differes significantly in
the representation of the discontinuity set. The level set method allows to represent, trace
and evolve a given sharp interface. This fits very well to the framework of the calculus
of shape derivatives in which the current interface is given precisely. On the other hand
the phase field function is capable to indicate the position of a inteface in a blurry way
only determined by the order of a grid size. The classical level set framework is restricted
to closed curves and thus it does not allow to represent crack tips or to generate a hole
using a single level set function. Topological derivative is used to generate holes in the
framework of the level set method [13]. On the other hand the phase field method appears
to be more flexible and practicable for the aforemntioned applications. The phase field
representation is global by definition and respects the features of the topology in the entire
domain occupied by a structure without requiring any initialization.

As far as it concerns algorithmic implementation of these approaches [20], the phase
field method, especially in the form of Allen-Cahn equation, seems to be easier to im-
plement. The phase field method can be implemented by solving parabolic equations
with coefficients dependent on spatial variables. Such problems are standard and can be
solved with PDE toolboxes. Since the interface is represented by a smooth phase field
function the solution of Helmholtz problems in the domains divided by free discontinuity is
straightforward and does not require any additional effort to take care of free boundaries.
The sharp interface approach requires to evaluate the velocity along the interface.

Structural optimization problems with a level set function and different phase field like
gradient flow equations are considered in [10, 18]. The relation between phase field and
sharp interface tracking models in optimal control problems is considered in [21]. Using
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the method of the matched asymptotic expansions it is shown that for the compliance
topology optimization problem in linear elasticity the sharp interface limit of the necessary
optimality condition for the phase field model when the interface width parameter is
passing to zero coincides with the necessary optimality condition for this optimization
problem obtained by the shape calculus [1].

3.1 Hybrid optimization problem formulation

Consider slightly modified level set function φ compare to the standard one [9],

0 < φ(x) ≤ 1 for x ∈ Ω \ ∂Ω,

φ(x) = 0 for x ∈ ∂Ω, (19)

−1 ≤ φ(x) < 0 for x ∈ D \ Ω.

Remark the level set function (19) is close to the phase field variable governing the evo-
lution of phases in the phase field method or to the so-called binary level set method [7].
This function is bounded and takes values close to +1 or -1 in regions sufficiently distant
from the interfaces. Consider the regularized cost functional (17):

JR(φ) = Jη(u(φ)) + ER(φ), ER(φ) =
1

2
τ

∫

D

| ∇φ |2 dΩ, (20)

τ > 0 is a regularization parameter. The structural optimization problem (18) takes the
form: find φ ∈ Uφ

ad such that:
min
φ∈Uφ

ad

JR(φ), (21)

where the admissible set Uφ
ad (15) in terms of φ has the form:

Uφ
ad = {φ ∈ H1(D) : V ol(φ) =

∫

D

H(φ)dx− V olgiv ≤ 0}. (22)

(u, λ) ∈ K × Λ solves the state system (11)-(12) in the domain D rather than Ω:

∫

D

H(φ)aijkleij(u)ekl(ϕ− u)dx−
∫

D

H(φ)fi(ϕi − ui)dx−
∫

Γ1

pi(ϕi − ui)ds +

∫

Γ2

λ(ϕT − uT )ds ≥ 0 ∀ϕ ∈ K, (23)

∫

Γ2

(ζ − λ)uT ds ≤ 0 ∀ζ ∈ Λ. (24)
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4 Necessary optimality condition

Let us formulate the necessary optimality condition for problem (21)-(24). In order to
do it we introduce the Lagrangian L(φ, λ̃) : H1(D)×R → R

L(φ, λ̃) = L(φ, uε, λε, p
a, qa, λ̃) = JR(φ) +∫

D

H(φ)aijkleij(uε)ekl(p
a)dx−

∫

D

H(φ)fi(p
a
i ))dx−

∫

Γ1

pip
a
i ds +

∫

Γ2

λε(p
a
T )ds + (25)

∫

Γ2

qauεT ds + λ̃c(φ) +
1

2µ
c2(φ),

where λ̃ ∈ R, c(φ) = [V ol(φ)], µ > 0 is a given real. By (pa, qa) ∈ K1 × Λ1 we denote an
adjoint state. Using the results on differentiability of varaitional inequalities [6] we obtain
[14] the adjoint state satisfies:∫

D

H(φ)aijkleij(η + pa)ekl(ϕ)dx +

∫

Γ2

qaϕT ds = 0 ∀ϕ ∈ K1, (26)

and ∫

Γ2

ζ(pa
T + ηT )ds = 0 ∀ζ ∈ Λ1. (27)

The sets K1 and Λ1 are given by

K1 = {ξ ∈ Vsp : ξN = 0 on Ast }, (28)

Λ1 = {ζ ∈ Λ : ζ(x) = 0 on B1 ∪B2 ∪B+
1 ∪B+

2 }, (29)

while the coincidence set Ast = {x ∈ Γ2 : uN + v = 0}. Moreover B1 = {x ∈ Γ2 : λ(x) =
−1}, B2 = {x ∈ Γ2 : λ(x) = +1}, B̃i = {x ∈ Bi : uN(x) + v = 0}, i = 1, 2, B+

i = Bi \ B̃i,
i = 1, 2.

Using (26)-(29) we can calculate the derivative of the Lagrangian L with rescpect to
φ: ∫

D

∂L

∂φ
(φ, λ̃)ζdx =

∫

D

[H(φ)(aijkleij(uε)ekl(p
a + η)−

f(pa + η)) + τ 4 φ]ζdx +

∫

D

(λ̃ +
1

µ
c(φ))ζdx ∀ζ ∈ H, (30)

The necessary optimality condition for problem (21)-(24) follows from standard argu-
ments [5, 6]: If (φ̂, λ̃?) ∈ Uφ

ad ×R is an optimal solution to problem (21)-(24) than:

L(φ̂, λ̃) ≤ L(φ̂, λ̃?) ≤ L(φ, λ̃?) ∀(φ, λ̃) ∈ Uφ
ad ×R, (31)

with λ̃ ≥ 0. (31) implies [5, 6] that for all φ and λ̃

∂L(φ̂, λ̃)

∂φ
≥ 0 and

∂L(φ, λ̃?)

∂λ̃
≤ 0 (32)
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5 Implementation issues

Uzawa type algorithm is employed to solve numerically optimization problem (21).
First as in [9] we assume that due to the evolution of the subdomains φ is also time
dependent. The minimization of the Lagrangian L(φ, λ̃) with respect to φ is realized by
solving the time dependent PDE [9]

∂φ(x, t)

∂t
= ∇φL(φ, λ̃) in D × (0,∞),

φ(x, 0) = φ0(x) in D, ∇φ · n = 0 on ∂D (33)

to reach the steady state ∂φ
∂t

= 0. It implies gradient ∇φL(φ, λ̃) given by (30) equals to
zero. φ0(x) is a given function. The explicit Euler scheme [2] is used to solve numerically
the equation (33), i.e.,

φn+1 = φn +4tn
∂L(φn, λ̃n)

∂φ
, (34)

where φn = φ(x, tn), 4tn denotes the n-th time step and ∂L(φn,λ̃n)
∂φ

is given by (30). To

satisfy CFL stability condition the stepsize 4tn is assumed to satisfy [9]

4tn = αh/ max
x∈D

| ∂L(φn(x), λ̃n)

∂φ
|, (35)

where α is a suitable given number and h is the uniform mesh size. The updating scheme
for the Lagrange multiplier λ̃ is as follows:

λ̃n+1 = λ̃n +
1

µn
V ol(φ), (36)

with the penalty parameter µn+1 ∈ (0, µn), µ0 > 0 given.

5.1 Numerical example

The discretized topology optimization problem (21) - (24) is solved numerically. As an
example a body occupying 2D domain

Ω = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ 0 < v(x1) ≤ x2 ≤ 4}, (37)

is considered. The boundary Γ of the domain Ω is divided into three pieces

Γ0 = {(x1, x2) ∈ R2 : x1 = 0, 8 ∧ 0 < v(x1) ≤ x2 ≤ 4},
Γ1 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ x2 = 4}, (38)

Γ2 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ v(x1) = x2}.
The domain Ω and the boundary Γ2 depend on the function v. The initial position of the
boundary Γ2 is given as in Fig. 1. The computations are carried out for the elastic body
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Figure 2: Optimal domain Ω?.

characterized by the Poisson’s ratio ν = 0.29, the Young modulus E = 2.1 · 1011N/m2.
The body is loaded by boundary traction p1 = 0, p2 = −5.6 · 106N along Γ1, body forces
fi = 0, i = 1, 2. Auxiliary function η is selected as piecewise constant (or linear) on D
and is aproximated by a piecewise constant (or bilinear) functions. The computational
domain D = [0, 8] × [0, 4] is selected. Domain D is discretized with a fixed rectangular
mesh of 80 × 40.

Fig. 2 presents the optimal domain obtained by solving structural optimization problem
(21) in the computational domain D using Uzawa type algorithm and employing the
optimality condition (31). The areas with low values of density function appeare in the
central part of the body and near the fixed edges. The obtained normal contact stress
is almost constant along the optimal shape boundary and has been significantly reduced
comparing to the initial one.

6 Concluding remarks

The topology optimization problem for elastic contact problem with the prescribed
friction is analyzed and solved numerically in the paper. The level set approach combined
with the phase field approach are used. The friction term complicates both the form of the
gradients of the cost functional as well as numerical process. Obtained numerical results
seems to be in accordance with physical reasoning. They indicate that the proposed
method allows for significant improvements of the structure from one iteration to the
next and is more efficient than the algorithms based on standard level set approach.
Comparing to the standard level set approach the proposed approach do not require
to solve Hamilton - Jacobi equation and to perform the reinitialization process of the
signed distance function. The proposed method has also a hole nucleation capabilieties
as topological gradient based methods.
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Andrzej M. Myśliński, Konrad Koniarski

[12] Bourdin, B., Chambolle, A. The phase-field method in optimal design. IUTAM
Symposium on Topological Design Optimization of Structures, Machines and Ma-
terial, M.P. Bendsoe, N. Olhoff, and O. Sigmund (Eds.), Solid Mechanics and its
Applications, Springer (2006), 207–216.

[13] Burger, M., Stainko, R. Phase-field relaxation of topology optimization with local
stress constraints. SIAM J. Control. Optim. (2006), 45:1447–1466.
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