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Abstract. Adaptive mesh-refining algorithms dominate the numerical simulations in
computational sciences and engineering, because they promise optimal convergence rates
in an overwhelming numerical evidence. The mathematical foundation of optimal con-
vergence rates has recently been completed [3] and shall be discussed in this talk. We
aim at a simultaneous axiomatic presentation of the proof of optimal convergence rates
for adaptive finite elements [10, 4, 2, 5] as well as boundary elements [7, 8] in the spirit
of [10]. For this purpose, an overall set of four axioms on the error estimator is sufficient
and (partially even) necessary.

Compared to the state of the art in the temporary literature [10, 4, 2, 7, 8, 5], the im-
provements of [3] can be summarized as follows: First, a general framework is presented
which covers the existing literature on rate optimality of adaptive schemes for both, linear
as well as nonlinear problems, which is fairly independent of the underlying (conforming,
nonconforming, or mixed) finite element or boundary element method. Second, efficiency
of the error estimator is not needed. Instead, efficiency exclusively characterizes the ap-
proximation classes involved in terms of the bestapproximation error plus data resolution.
Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary
for the R-linear convergence of the error estimator, which is a fundamental ingredient in
the current quasi-optimality analysis [10, 4, 2, 7, 8, 5]. Finally, the general analysis allows
for various generalizations like equivalent error estimators and inexact solvers as well as
different non-homogeneous and mixed boundary conditions.
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Figure 1: Numerical results of Algorithm 1 with θ = 0.25 for lowest-order 2D BEM for weakly-singular
integral equation Vu = f on the slit Γ = (−1, 1) × {0} with f(x, 0) = −x (see Section 5). Adaptivity

is driven by the weighted-residual error estimator defined in (25) below. The energy space is H̃−1/2(Γ).
For lowest-order BEM, the optimal order of convergence thus is O(N−3/2), while singularities of φ reduce
the order down to O(N−1/2) for uniform mesh-refinement (left). The error estimator provides a lower
bound (efficiency (7)) and an upper bound (reliability (6)) for the (in general) unknown error (right).

1 INTRODUCTION

The ultimate goal of adaptive mesh-refining algorithms is to compute a discrete solution
with error below a prescribed tolerance at the expense of, up to a multiplicative constant,
the minimal computational cost. Although adaptive strategies have been successfully em-
ployed since the eighties and empirically led to optimal convergence rates in an exhaustive
number of numerical experiments, the mathematical understanding of convergence and
optimal rates has been a long standing issue.

In practice, the adaptive algorithm iterates the loop

solve −→ estimate −→ mark −→ refine (1)

and so provides a sequence of discrete solutions Uℓ which approximate some target u,
as well as the corresponding error estimators ηℓ which measure the approximation error
‖u− Uℓ‖.

Figure 1 shows the typical outcome of an adaptive algorithm for some 2D boundary
element computation and illustrates the following main results, we aim to explain and
analyze below. Precise statements of these main results are given in Section 6.

Main Result 1 The adaptive algorithm guarantees R-linear convergence in the sense of

ηℓ+n ≤ Cqn ηℓ for all ℓ, n ∈ N0, (2)
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with certain constants C > 0 and 0 < q < 1. �

Main Result 2 The adaptive algorithm is quasi-optimal in the sense that it recovers the
optimal algebraic convergence rate after a possible preasymptotic phase. �

The remainder of this work is organized as follows: Section 2 provides our formulation
of the adaptive loop (1) and states the four axioms (A1)–(A4) of adaptivity from [3].
Section 3 collects some remarks on the abstract frame and important consequences of
these axioms. In many important situations, which are discussed in Section 4, the quasi-
orthogonality (A3) is automatically satisfied. Section 5 gives three prominent examples
and comments on the verification of the axioms (A1)–(A4). We conclude this work with
the thorough mathematical formulation of Main Result 1–2 in Section 6.

2 ADAPTIVE ALGORITHM AND ABSTRACT AXIOMS

Throughout, we consider conforming triangulations which consist of simplices. For lo-
cal mesh-refinement, we employ newest vertex bisection (NVB). For the precise mesh-
refinement rules, we refer to, e.g., [11]. Together with the given initial triangulation T0,
this fixes the set T of all conforming triangulations which can theoretically be obtained.

For T ∈ T and M ⊆ T , we write T ′ = refine(T ,M) ∈ T for the one-level refinement,
i.e., the coarsest conforming refinement of T such that all marked simplices T ∈ M have
been bisected. Moreover, we write T ′ ∈ refine(T ), if T ′ ∈ T is obtained by finitely many
steps of one-level refinements. In this sense, it also holds T = refine(T0).

We assume that, for any triangulation T ∈ T, we can compute a discrete solution

UT and a corresponding error estimator ηT =
(∑

T∈T ηT (T )
2
)1/2

. The local contributions
ηT (T ), called refinement indicators, are used to single-out certain elements for refinement.
Overall, we consider the following realization of the adaptive loop (1), where we abbreviate
Uℓ := UTℓ and ηℓ := ηTℓ .

Algorithm 1 Input: Initial triangulation T0 and bulk parameter 0 < θ < 1.
Loop: For ℓ = 0, 1, 2, . . . , do (i)–(iv).

(i) Compute discrete solution Uℓ for Tℓ.

(ii) Compute refinement indicators ηℓ(T ) for all T ∈ Tℓ.

(iii) Determine set Mℓ ⊆ Tℓ of minimal cardinality such that

θ η2ℓ ≤
∑

T∈Tℓ

ηℓ(T )
2. (3)

(iv) Generate new triangulation Tℓ+1 = refine(Tℓ,Mℓ).

Output: Sequence of locally refined triangulations Tℓ with corresponding discrete solutions
Uℓ and error estimators ηℓ for all ℓ ∈ N0. �
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The mathematical analysis of Algorithm 1 requires some properties on the formal
setting. First, we assume that uniform mesh-refinement leads to guaranteed convergence,
i.e., there exists some (unknown) limit u and some appropriate norm ‖ · ‖ such that

∀ε > 0 ∀T ∈ refine(T0) ∃T
′ ∈ refine(T ) : ‖u− UT ′‖ ≤ ε. (4)

Note that this assumption does not guarantee convergence of Algorithm 1 in the sense of
‖u − Uℓ‖ → 0 as ℓ → ∞, but is essential to allow for convergence at all. Moreover, we
assume that we can measure the difference ‖UT ′ − UT ‖ of two discrete solutions corre-
sponding to T ′ ∈ refine(T ). With these notations, the performance of Algorithm 1 can
be characterized with the below axioms which have been identified in [3]: Main Result 1
holds if (A1)–(A3) are satisfied. Main Result 2 holds if (A1)–(A4) are satisfied.

(A1) Stability on non-refined simplices: There exists some constant Cstab > 0
such that, for all T ∈ T and T ′ ∈ refine(T ), it holds

∣∣∣
( ∑

T∈T ∩T ′

ηT ′(T )2
)1/2

−
( ∑

T∈T ∩T ′

ηT (T )
2
)1/2∣∣∣ ≤ Cstab ‖UT ′ − UT ‖.

(A2) Reduction on refined simplices: There exist constants Cred > 0 and 0 <
qred < 1 such that, for all T ∈ T and T ′ ∈ refine(T ), it holds

∑

T∈T ′\T

ηT ′(T )2 ≤ qred
∑

T∈T \T ′

ηT (T )
2 + Cred ‖UT ′ − UT ‖

2.

(A3) Quasi-orthogonality: With u from (4), there exists some constants 0 ≤ εorth ≪
1 and Corth(εorth) > 0 such that the output of Algorithm 1 satisfies for all ℓ, n ∈ N0

ℓ+n∑

k=ℓ

(
‖Uk+1 − Uk‖

2 − εorth‖u− Uk‖
2
)
≤ Corth(εorth) η

2
ℓ .

(A4) Discrete reliability: There exist constants Crel, Cref > 0 such that for all T ∈ T
and all T ′ ∈ refine(T ) and some appropriate set T \T ′ ⊆ R(T , T ′) ⊆ T , it holds

‖UT ′ − UT ‖
2 ≤ C2

rel

∑

T∈R(T ,T ′)

ηT (T )
2 and #R(T , T ′) ≤ Cref #(T \T ′),

where #(·) denotes the number of simplices.

3 REMARKS ON AXIOMS

• Discretization. Let X denote the space which contains the target u. For each
triangulation T ∈ T, let XT be the discrete space which contains the discrete solution
UT . We note that we do neither assume conformity of the discretization, i.e., XT ⊆ X ,
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nor nestedness of the discrete spaces, i.e., XT ⊆ XT ′ for T ′ ∈ refine(T ). Moreover, it
is essentially immaterial whether X and XT have a vector space structure and if ‖ · ‖ is
really a norm or metric [3, Section 2].
• Applicability. The axioms are independent of the actual formulations which de-

termine the target u as well as the approximations UT for T ∈ T. In particular, they are
independent of the method, e.g., (conforming, nonconforming, mixed) finite elements or
boundary elements, as well as of linearity or nonlinearity of the problem. Moreover, all
results are independent of any Céa-type quasi-optimality

‖u− UT ‖ ≤ CCéa min
VT ∈XT

‖u− VT ‖, (5)

where XT is the ansatz set for UT . Instead, all these properties only enter for the verifi-
cation of the axioms in particular situations, see Section 5 as well as [3, Section 5 and 9].
• Existing results. The set of axioms (A1)–(A4) does neither contain the classical

reliability, nor the efficiency estimate: The error estimator is reliable if there exists a
constant C ′

rel > 0 such that for all T ∈ T holds

‖u− UT ‖ ≤ C ′
rel ηT . (6)

The error estimator is efficient if there exists a constant Ceff > 0 such that for all T ∈ T
and some quantity oscT holds

C−1
eff ηT ≤ ‖u− UT ‖+ oscT and oscT ≤ Ceff ηT . (7)

Instead, we note that, first, discrete reliability (A4) together with (4) implies reliability (6)
even with C ′

rel = Crel, see [3, Section 3.3]. Second, the mainstream literature on optimality
of adaptive algorithms, e.g., [10, 4, 7, 8] relies on (6)–(7) and uses the total error ‖u −
UT ‖ + γ oscT with some (generically small) constant γ > 0 to formulate their respective
Main Result 1–2. We note that (6)–(7) imply

min{1, γ}C−1
eff ηT ≤ ‖u− UT ‖+ γ oscT ≤ (Crel + γCeff)ηT , (8)

so that our estimator-based formulation, in fact, generalizes those from the literature.
• Estimator reduction. Stability (A1) and reduction (A2) imply the existence of

Cest > 0 and 0 < qest < 1 such that for all T ∈ T and all T ′ ∈ refine(T ) it holds

θ η2T ≤
∑

T∈T \T ′

ηT (T )
2 =⇒ η2T ′ ≤ qest η

2
T + Cest ‖UT ′ − UT ‖

2, (9)

see [3, Section 4.3], where qest and Cest depend also on the bulk parameter 0 < θ < 1.
• Quasi-orthogonality (A3) and R-linear convergence. Suppose that the error

estimator satisfies the estimator reduction (9) and reliability (6). (For instance, assume
that stability (A1), reduction (A2), and discrete reliability (A4) are satisfied.) Then,
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quasi-orthogonality (A3) is satisfied if and only if Algorithm 1 is R-linearly convergent (2).
In this case, (A3) holds even with εorth = 0, see [3, Section 4.4]. The subsequent Sec-
tion 4 provides mathematical frameworks, where the quasi-orthogonality (A3) is problem
inherently satisfied.
• Discrete reliability (A4) and optimality of marking strategy. Suppose sta-

bility (A1) and reduction (A2). Then, discrete reliability (A4) proves that the mark-
ing criterion (3) is not only sufficient for linear convergence, but also necessary: For
0 < θ < θ⋆ := 1/(1 + C2

stabC
2
rel), there exists 0 < κ < 1 such that for all T ∈ T and all

T ′ ∈ refine(T ), it holds

ηT ′ ≤ κ ηT =⇒ θ η2T ≤
∑

T∈R(T ,T ′)

ηT (T )
2. (10)

This means that if an adaptive algorithm yields R-linear convergence (2) of the estimator
sequence (ηℓ)ℓ∈N0

, there exists some n ∈ N such that the marking strategy (3) is at least
satisfied every n steps of the adaptive loop (1).

4 VALIDITY OF QUASI-ORTHOGONALITY AXIOM (A3)

In many important situations of mixed FEM and conforming FEM, the abstract frame is
the following: On the continuous level, the target belongs to a real Hilbert space X ∋ u
with norm ‖ · ‖ and solves the variational formulation

a(u, v) = f(v) for all v ∈ X (11)

with a continuous bilinear form a(·, ·) : X × X → R and a continuous linear functional
f : X → R. On the discrete level, each triangulation T ∈ T induces a conforming subspace
XT ⊆ X with UT ∈ XT which satisfies nestedness XT ⊆ XT ′ for all T ′ ∈ refine(T ).
Moreover, the discrete solution solves the variational formulation

a(UT , VT ) = f(VT ) for all VT ∈ XT . (12)

In this situation, the quasi-orthogonality (A3) is problem inherent (see Corollary 4 below).
The following result from [6, Theorem 1] covers conforming discretizations as, e.g., FEM,
BEM, and the FEM-BEM coupling, in the frame of the Lax-Milgram lemma.

Theorem 2 Suppose that a(·, ·) is elliptic, i.e., there exists Cell > 0 such that

Cell ‖v‖
2 ≤ a(v, v) for all v ∈ X . (13)

Then, the discrete solutions Uℓ ∈ Xℓ generated by Algorithm 1 satisfy the generalized
Pythagoras theorem

∞∑

k=ℓ

‖Uk+1 − Uk‖
2 ≤ Cpyth ‖u− Uℓ‖

2 for all ℓ ∈ N0. (14)

The constant Cpyth > 0 depends only on a(·, ·) and the sequence (Xℓ)ℓ∈N0
of nested discrete

spaces. �
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Adopting the analysis of [6], the work [9] proves the following similar result [9, The-
orem 2.1] which covers certain mixed FEM discretizations like the Taylor-Hood element
for the stationary Stokes system. While Theorem 2 covers elliptic, but possibly non-
symmetric bilinear forms, the following Theorem 3 assumes symmetry of a(·, ·).

Theorem 3 Let A ∈ L(X ,X ∗) denote the linear operator induced by Aw := a(w, ·) for
all w ∈ X . For T ∈ T, let JT : XT → X be the natural injection with adjoint J∗

T . Suppose
that a(·, ·) is symmetric, i.e., a(v, w) = a(w, v) for all v, w ∈ X , and satisfies some
uniform LBB-condition, i.e., A as well as AT := J∗

T AJT ∈ L(XT ,X
∗
T ) are isomorphisms

with uniformly bounded operators norms

‖A‖, ‖A−1‖, ‖AT ‖, ‖A
−1
T ‖ ≤ M for all T ∈ T. (15)

Then, the discrete solutions Uℓ ∈ Xℓ generated by Algorithm 1 satisfy the generalized
Pythagoras theorem

∞∑

k=ℓ

‖Uk+1 − Uk‖
2 ≤ Cpyth ‖u− Uℓ‖

2 for all ℓ ∈ N0. (16)

The constant Cpyth > 0 depends only on M and the sequence (Xℓ)ℓ∈N0
of nested discrete

spaces. �

The following corollary is an immediate consequence and proves that the (on a first
glance critical) quasi-orthogonality (A3) is automatically satisfied.

Corollary 4 Suppose that the assumptions of either Theorem 2 or Theorem 3 are sat-
isfied. Then, discrete reliability (A4) (or even plain reliability (6)) implies the quasi-
orthogonality (A3) with εorth = 0 and Corth = CpythCrel. �

One may expect that Theorem 2 and Theorem 3 (and consequently Corollary 4) still
allow for structural improvements, e.g., avoidance of the Hilbert space structure, avoidance
of the symmetry of a(·, ·) in Theorem 3, as well as weaker dependencies of Cpyth, namely
independence of the sequence (Xℓ)ℓ∈N0

. We illustrate this for the most simple model
situation, where a(·, ·) is a scalar product on X with ‖v‖2 = a(·, ·). Then, nestedness
Xℓ ⊆ Xℓ+1 and the discrete formulation (12) yield the Pythagoras theorem

‖u− Uk+1‖
2 + ‖Uk+1 − Uk‖

2 = ‖u− Uk‖
2. (17)

Hence, the telescoping series proves

ℓ+n∑

k=ℓ

‖Uk+1 − Uk‖
2 = ‖u− Uℓ‖

2 − ‖u− Uℓ+n+1‖
2 ≤ ‖u− Uℓ‖

2, (18)

i.e., Cpyth = 1 depends only on a(·, ·), but not on (Xℓ)ℓ∈N0
.
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Remark 5 Suppose reliability (6) of the error estimator. Under the assumptions of either
Theorem 2 or Theorem 3, the t stability of the Galerkin projections reveals for all T ′ ∈
refine(Tℓ) and hence Xℓ ⊆ XT ′

C−2
Gal ‖UT ′ − Uℓ‖

2 ≤ ‖u− Uℓ‖
2 ≤ (C ′

rel)
2 η2ℓ ≤ (C ′

rel)
2θ−1

∑

T∈Mℓ

ηℓ(T )
2.

Consequently, this proves the discrete reliability (A4) with Crel = CGalC
′
relθ

−1/2 at least
along the sequence of meshes Tℓ generated by Algorithm 1. Hence, (A4) appears to be not
only sufficient, but also necessary. �

5 EXEMPLARY VERIFICATION OF AXIOMS

In the following, we verify the axioms (A1)–(A4) for certain examples. Throughout,
Ω ⊂ Rd for d ≥ 2 is a bounded Lipschitz domain with polyhedral boundary ∂Ω. We
refer to [3, Section 5 and 9], where those axioms are proved for further examples with
nonconforming and mixed FEM as well as conforming FEM for nonlinear problems.

5.1 Conforming FEM for Poisson model problem

For given f ∈ L2(Ω), we consider

−∆u = f in Ω with homogeneous Dirichlet boundary conditions u = 0 on ∂Ω. (19)

The corresponding bilinear form a(u, v) :=
∫
Ω
∇u · ∇v dx is an equivalent scalar product

on X = H1
0 (Ω) with norm ‖u‖ = ‖∇u‖L2(Ω). Given T ∈ T, let Pp(T ) be the space of

all T -piecewise polynomials of degree p and XT := Pp(T )∩H1
0 (Ω). Overall, the problem

fits in the abstract frame of Section 4, and the Lax-Milgram lemma proves existence and
uniqueness of the solutions u ∈ X of (11) and UT ∈ XT of (12).

As implicitly proved in [4, Corollary 3.4], the standard residual error estimator with

ηT (T )
2 := |T |2/d‖f +∆UT ‖

2
L2(T ) + |T |1/d‖[∇UT · n]‖2L2(∂T∩Ω) for all T ∈ T (20)

satisfies stability (A1) and reduction (A2). We note that the proof of (A1) essentially
follows from scaling arguments and inverse-type estimates, and the proof of (A2) addi-
tionally employs that the local mesh-size is uniformly shrunken |T ′| ≤ |T |/2 for successors
T ′ ∈ T ′ ∈ refine(T ) of T ∈ T \T ′ with T ′ $ T . The proof of (A4) is essentially the same
as for the classical reliability, but relies on the choice of the Scott-Zhang projection and the
construction of clever test functions [4, Lemma 3.6]. Finally, the quasi-orthogonality (A3)
follows either from Corollary 4 or the elementary calculation (17)–(18). Overall, this ver-
ifies the axioms (A1)–(A4) and yields the following

Consequence. Algorithm 1 for conforming FEM for the Poisson model problem
converges optimally in the sense of Main Result 1–2. �
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5.2 Conforming FEM for linear second-order elliptic operator

We consider

Lu := −div(A∇u) + b · ∇u+ cu = f in Ω with u = 0 on ∂Ω. (21)

We suppose a symmetric diffusion matrix A ∈ W∞
1 (Ω) with A(x) ∈ Rd×d

sym, convection
b ∈ L∞(Ω) with b(x) ∈ Rd, and reaction c ∈ L∞(Ω) with c(x) ∈ R. Here, L∞(Ω)
is the space of essentially bounded functions, and W∞

1 (Ω) := {a ∈ L∞(Ω) : ∇a ∈
L∞(Ω) in the weak sense} coincides with the space of Lipschitz continuous functions.

Note that L is non-symmetric as

L 6= LT = −divA∇u− b · ∇u+ (c− divb)u.

We let f ∈ L2(Ω) and assume that the induced bilinear form

a(u, v) :=

∫

Ω

A∇u · ∇v + b · ∇uv + cuv dx for u, v ∈ H1
0 (Ω)

is continuous and elliptic on X := H1
0 (Ω). With XT := Pp(T )∩H1

0 (Ω), the problem thus
fits in the abstract frame of Section 4, and the Lax-Milgram lemma proves existence and
uniqueness of the solutions u ∈ X of (11) and UT ∈ XT of (12).

For this problem, the refinement indicators of the residual error estimator read

ηT (T )
2 := |T |2/d‖f − L|TUT ‖

2
L2(T ) + |T |1/d‖[A∇UT · n]‖2L2(∂T∩Ω) for all T ∈ T , (22)

where |T | denotes the volume of the simplex T . Arguing along the lines of [4], it is
shown in [5] that the residual error estimator satisfies stability (A1), reduction (A2),
and discrete reliability (A4) with R(T , T ′) = T \ T ′. The quasi-orthogonality (A3) —
and consequently the validity of Main Result 1–2 — was open until [5], and appears
there first in the literature. The alternative approach of Theorem 2, influenced by the
abstract developments of [3], has only recently been discovered [6]. Overall, this verifies
the axioms (A1)–(A4) and yields the following

Consequence. Algorithm 1 for conforming FEM for some general linear second-order
elliptic operator converges optimally in the sense of Main Result 1–2. �

5.3 Conforming BEM for weakly-singular integral equation

Let Γ ⊆ ∂Ω be a relatively open subset. For given f ∈ H1/2(Γ) := {φ|Γ : φ ∈ H1(Ω)},
we consider the weakly-singular first-kind integral equation

Vu(x) :=

∫

Γ

G(x− y)u(y) dΓ(y) = f(x) for all x ∈ Γ, (23a)

9
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with the fundamental solution of the Laplacian

G(z) := −
1

2π
log |z| for d = 2 resp. G(z) :=

1

4π

1

|z|
for d = 3. (23b)

The sought solution satisfies u ∈ H̃−1/2(Γ) which is the dual space of H1/2(Γ) with respect

to the extended L2(Γ)-scalar product. We note that V ∈ L(H̃−1/2+s(Γ);H1/2+s(Γ)) is a
linear, continuous, and symmetric operator for all −1/2 < s < 1/2. For 2D, we assume

diam(Ω) < 1 which can always be achieved by scaling. Then, V is also H̃−1/2-elliptic and

hence defines an equivalent scalar product on X := H̃−1/2(Γ),

a(u, v) :=

∫

Γ

(Vu)v dΓ for u, v ∈ H̃−1/2(Γ) (24)

with induced norm ‖v‖2 := a(v, v). For T ∈ T being a surface triangulation of Γ, let
XT := Pp(T ). Then, the problem fits in the frame of Section 4, and the Lax-Milgram
lemma proves existence and uniqueness of the solutions u ∈ X of (11) and UT ∈ XT

of (12).
Under additional regularity of the data f ∈ H1(Γ), we consider the weighted-residual

error estimator, e.g., [7] with local contributions

ηT (T )
2 := |T |1/(d−1) ‖∇Γ(f − VUT )‖

2
L2(T ) for all T ∈ T . (25)

Here, ∇Γ(·) denotes the surface gradient (resp. the arclength derivative for d = 2).
Stability (A1) and reduction (A2) are implicitly proved in [7, Proposition 4.2] and

rely on new inverse-type estimates which have been independently first proved in [7, 8].
While [7] only treats the lowest-order case p = 0, but polyhedral boundaries, [8] treats
general p ≥ 0, but is restricted to smooth C1,1 boundaries. General p ≥ 0 and polyhedral
boundaries are analyzed in [1]. Discrete reliability (A4) is proved in [7, Proposition 5.3],
where R(T , T ′) consists of the refined elements T \T ′ plus all their neighbors. As for
the Poisson model problem, the quasi-orthogonality (A3) follows either from Corollary 4
or the elementary calculation (17)–(18). Overall, this verifies the axioms (A1)–(A4) and
yields the following

Consequence. Algorithm 1 for conforming BEM for the weakly-singular integral
equation (23) converges optimally in the sense of Main Result 1–2. �

6 MATHEMATICAL STATEMENT OF MAIN RESULTS

In the following, we give the formal statements of our main results from the introduction.

Main Result 1 Suppose stability (A1), reduction (A2), and quasi-orthogonality (A3).
Then, for all 0 < θ ≤ 1, reliability (6) resp. discrete reliability (A4) imply R-linear

10
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convergence of the estimator in the sense that there exists 0 < qconv < 1 and Cconv > 0
such that

ηℓ+n ≤ Cconvq
n
convηℓ for all ℓ, n ∈ N0.

The constants 0 < qconv < 1 and Cconv > 0 depend only on Cstab, qred, Cred, Corth(εorth),
Crel, and θ. �

The best possible algebraic convergence rate 0 < s < ∞ obtained by any local mesh
refinement is characterized in terms of

‖u‖s := sup
N∈N0

min
T ∈T

#T −#T0≤N

(N + 1)s‖u− UT ‖ < ∞.

The statement ‖u‖s < ∞ means that ‖u− UT ‖ = O(N−s) for the optimal triangulations
T ∈ T, independently of the error estimator. Since the adaptive algorithm is steered by
the error estimator ηT , it appears natural to consider the best algebraic convergence rate
O(N−s) in terms of ηT , characterized by

‖η‖s := sup
N∈N0

min
T ∈T

#T −#T0≤N

(N + 1)sηT < ∞.

This implies the convergence rate ηT = O(N−s) for the optimal triangulations T ∈ T.

Main Result 2 Suppose stability (A1), reduction (A2), quasi-orthogonality (A3), and
discrete reliability (A4). Then, for all 0 < θ < 1/(1 + C2

stabC
2
rel), the error estimator

converges with the optimal rate in the sense that there exists copt, Copt > 0 such that

copt‖η‖s ≤ sup
ℓ∈N0

ηℓ
(#Tℓ −#T0 + 1)−s

≤ Copt‖η‖s.

The constant copt depends only on NVB, whereas the constant Copt depends additionally
on θ, s, Cstab, qred, Cred, Corth(εorth), Crel, and Cref . �

The detailed proofs of Main Result 1–2 are given in [3, Section 4, Theorem 4.1]. If the
error estimator is also efficient (7), we can improve the above result. With

‖osc‖s := sup
N∈N0

min
T ∈T

#T −#T0≤N

(N + 1)soscT < ∞,

there holds the following corollary [3, Theorem 4.5].

Corollary 6 Suppose the claims of Main Result 2 and let ηT additionally satisfy effi-
ciency (7). Then, the error converges with optimal rate in the sense that there exists c′opt,
C ′

opt > 0 such that

c′opt‖u‖s ≤ sup
ℓ∈N0

‖u− Uℓ‖

(#Tℓ −#T0 + 1)−s
+ ‖osc‖s ≤ C ′

opt

(
‖u‖s + ‖osc‖s

)
.

The constants c′opt, C
′
opt > 0 depend only on copt, Copt > 0 and on Ceff. �

11
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