
11th World Congress on Computational Mechanics (WCCM XI) 
5th European Conference on Computational Mechanics (ECCM V) 

6th European Conference on Computational Fluid Dynamics (ECFD VI) 
E. Oñate, J. Oliver and A. Huerta (Eds) 

 
 
 

VEHICLE/BRIDGE INTERACTION DYNAMICS FOR HIGH SPEED 
RAIL SUSPENSION BRIDGES CONSIDERING MULTIPLE SUPPORT 

EXCITATIONS 

J.D. YAU * , L. FRYBA†1 AND S.R. KUO†2 

* Tamkang University, New Taipei City, Taiwan, 
e-mail: jdyau@mail.tku,edu.tw 

 
†1 Institute of Applied and Theoretical Mechanics, ASCR, Czech of Republic 

email: fryba@itam.cz 
†2 National Taiwan Ocean University, Keelung, Taiwan, 

e-mail: srkuo@mail.ntou.edu.tw 
 
Key Words: High speed rail; Moving loads; Multiple support motions; Suspension bridge. 
 
Abstract. In this study, a railway suspension bridge is modeled as a suspended beam and the 
train over it as a sequence of moving sprung masses. To investigate the bridge response 
subjected to simultaneous actions of moving load and earthquake-induced support motions, 
the total response of the suspended beam under ground motions can be decomposed into two 
parts: the pseudo-static response and the inertia-dynamic component, in which the pseudo-
static displacement is analytically obtained by exerting the support movements on the 
suspended beam statically and the governing equations in terms of the inertia-dynamic 
component as well as moving oscillators are transformed into a set of nonlinearly coupled 
generalized equations by Galerkin’s method. When conducting the dynamic response analysis 
of a suspended beam subject to moving vehicles and multiple support excitations, one needs 
to deal with nonlinear coupling vibration problems with time-dependent boundary conditions. 
Instead of solving the coupled equations for the inertia-dynamic generalized system 
containing pseudo-static support excitations and moving oscillators, this study treats all the 
nonlinear coupled terms as pseudo forces, and then solves the decoupled equations using 
Newmark’s β  method with an incremental-iterative approach that can take all the nonlinear 
coupling effects into account. Numerical investigations demonstrate that the present solution 
technique is available in conducting the dynamic interaction problem with support excitations. 
Moreover, non-uniform seismic inputs may amplify the both responses of the suspended beam and 
moving vehicles over it significantly. Such an effect is often neglected by the assumption of uniform 
seismic ground motions in conventional design of bridge structures. 

 
 
1 INTRODUCTION 

A suspension bridge possesses an advantage in spanning valleys, rivers for its characteristics 
of long span. However, the suspension bridge may be subjected to multiple support motion in 
seismic zone [1,2]. This issue would become an important role in affecting operation of high 
speed rail, especially for the running safety of a traveling train over it. When conducting the 
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dynamic response analysis of a suspended beam subject to moving vehicles and multiple 
support excitations, one needs to deal with nonlinear coupling vibration problems with time-
dependent boundary conditions. In this study, a railway suspension bridge is modeled as a 
suspended beam [3-6] and the train over it as a sequence of moving sprung masses. To 
investigate the bridge response subjected to simultaneous actions of moving load and 
earthquake-induced support motions, the total response of the suspended beam under ground 
motions can be decomposed into two parts: the pseudo-static response and the inertia-
dynamic component [7,8], in which the pseudo-static displacement is analytically obtained by 
exerting the support movements on the suspended beam statically and the governing 
equations in terms of the inertia-dynamic component as well as moving oscillators are 
transformed into a set of nonlinearly coupled generalized equations by Galerkin’s method [9]. 
Instead of solving the coupled equations for the inertia-dynamic generalized system 
containing pseudo-static support excitations and moving oscillators, this study treats all the 
nonlinear coupled terms as pseudo forces, and then solves the decoupled equations using 
Newmark’s β  method with an incremental-iterative approach that can take all the nonlinear 
coupling effects into account. Numerical investigations demonstrate that the present solution 
technique is available in conducting the dynamic interaction problem with support excitations. 
Moreover, the numerical demonstrations indicated that non-uniform seismic inputs may amplify 
the both responses of the suspended beam and moving vehicles  over it significantly. Such an effect is 
often neglected by the assumption of uniform seismic ground motions in conventional design of bridge 
structures. 

 

 
Fig. 1  Suspended beam under train loads and ground support motions 

2 FORMULATION OF SUSPENSION BRIDGES 

In this study, the dynamic behavior of a suspension bridge carrying a moving train is 
limited to vertical vibration of a single-span suspended beam with hinged supports. Based on 
the deflection theory of small deformation [3-6], basic simplifications for the analytical mode 
of suspended beam and moving train are outlined as follows: (1) The stiffening girder is 
modeled as a linear elastic Bernoulli-Euler beam with uniform cross section; (2) The rigid 
towers supporting the stiffening girder and suspension cable are assumed; (3) The train 
passing over the suspended beam a sequence of equidistant moving oscillators with identical 
properties (see Fig. 1). 
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2.1 Governing equations of motion 

The governing equation of motion for the suspended beam undergoing differential support 
movements can be described as [8] 
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with Ec = elastic modulus of the cable, Ac = area of the cable, Lc = the effective length of the 
cable. (u0, uL ) and (dx0, dxL) represent the vertical and horizontal support movements at the 
left and right bridge supports, respectively. As shown in Fig. 1, each sprung mass unit is used 
to model either the front or rear half of a carriage, which is composed of a lumped mass 
supported by a spring-dashpot system. Let the oscillator model has the following properties: 
mw = mass of wheel-set, mv = lumped mass, cv = damping coefficient, and kv = stiffness 
coefficient. Consider the regular nature of sprung mass units shown in Fig.2, the load function 
p(x,t) is given as [8]:  
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in which, P = -(mv + mw)g = lumped weight of a moving oscillator, δ = Dirac's delta function, 
H(t) = unit step function, k =1, 2, 3, …, N-th moving load on the beam, tk = arrival time of the 
k-th oscillator entering the beam, uvk = vertical displacement of the k-th lumped mass, fvk = 
interaction force existing between the beam and the wheel mass of the k-th moving oscillator, 

( )kxγ  = track irregularity (vertical profile), and xk = position of the k-th load along the rail line, 
as defined in Eq. (4). As shown in Eq. (4), 0kx <  represents the k-th oscillator is entering to 
the suspended beam, ( )0 ( )k kx v t t L≤ = − ≤  running on the beam, and  kx L>  departing the 
beam. 
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2.2 Method of solution 

As indicated in Eqs. (1) and (3), it is a partial integro-differential equation with time-
dependent boundary condition. For this problem, this study divides the total deflection 
response u(x,t) of the suspended beam into two parts: the static displacement U(x,t) and the 
dynamic deflection ud(x,t) [7,8] 
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Here, U(x,t) represents the structure deformation caused by the relative support displacements 
applied statically, and qn(t) means the generalized coordinate associated with the n-th assumed 
mode of the suspended beam. By this concept, the static displacement is given as:  
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and 2 ( ) /T T EIλ = + ∆ . The pseudo-static displacement shown in Eq. (6) reveals that the first 
term represents the rigid body displacement due to vertical support movements, and the 
second term means the pseudo-static natural deformation of the suspended beam caused by 
the relative support movements. It is emphasized that the effect of non-uniform horizontal 
seismic inputs is of importance to earthquake-induced vibration of suspension bridges since it 
is usually neglected in seismic design based on the assumption of uniform seismic ground 
motions. By Galerkin’s method, the following generalized equation of motion for the n-th 
dynamic system of the suspended beam is given: 
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with the coupled equation of the k-th sprung mass unit in Eq. (4). Here,  
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and the generalized forces of ( , , )k nF v tϖ  with respect to the k-th sprung mass unit are 
respectively expressed as 
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and ( / )n n v Lϖ π= . Combining Eqs. (4) and (8) yields the following equation of motion for 
the vehicle/bridge interaction model 
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where {q} = generalized coordinate vector of the suspended beam, [mb] = generalized beam 
mass matrix including the sprung masses moving on the suspended beam, [cb] = generalized 
beam damping matrix, [kb] = generalized beam stiffness matrix, {p} = generalized force 
vector acting on the generalized beam system; {uv} = vehicle displacement vector, {fv} = 
exciting force vector, and ([kc],[cc],[mc]) = structural matrices of the vehicles corresponding to 
mass, damping, and stiffness.  

3 STRATEGY FOR INCREMENTAL-ITERATIVE DYNAMIC ANALYSIS 

    To compute the dynamic response of vehicle-bridge interactions for a suspended beam 
undergoing support movements, an incremental-iterative procedure needs to be carried out [9]. 
The numerical procedure of incremental-iterative dynamic analysis conventionally involves 
three phases: predictor, corrector, and equilibrium checking. In performing the dynamic 
response analysis of structures containing seismic ground motions, two sets of structure 
responses have to be computed each for the pseudo-static response and for the inertia-
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dynamic response. The incremental-iterative procedure for nonlinear dynamic analysis of 
vehicle-bridge interaction system shaken by earthquakes is summarized as follows:  
(1) Treat the pseudo-static displacement U(x, t) derived in Section 2 as an exciting source of 

the equivalent dynamic force ( )mU cU− −ɺɺ ɺ  to excite the inertia-dynamic response for the 
beam-oscillator interaction system. In this stage, the oscillators not traveling over the 
suspended beam are only subjected to the action of seismic ground motions; 

(2) Transform the governing differential equation in Eq. (1) into a set of coupled equations of 
generalized system as Eq. (8) and then remove the coupled terms to the right hand side of 
Eq. (8) to form a set of uncoupled equations of motion; 

(3) Discretize each of the uncoupled equations into an equivalent stiffness equations using 
Newmark’s method; 

(4) Perform the iterative procedure proposed to compute the inertia-dynamic response of the 
suspended beam and update the dynamic responses of moving oscillators at each iteration; 

(5) Check the unbalanced forces to reach preset tolerances. As the root mean square of the 
sum of the generalized unbalanced forces is larger than the preset allowable values, go to 
step (4) to precede the next iteration for removing the unbalanced forces. Once the 
condition of convergence is satisfied, the total dynamic response of the suspended beam 
can be computed using Eq. (5) by combining the pseudo-static and inertia-dynamic parts 
of the beam response;  

(6) Repeat the steps (4) and (5) for other time instants. 
      Detailed information for nonlinear VBI dynamic analysis is available in references [6]. 
 

Table 1.  Properties and natural frequencies of the suspended beam. 
L 

(m) 
EI 

(kN-m2) 
EcAc 
(kN) 

m 
(t/m) 

c 
(kN-s/m/m) 

y0 (m) 
[y0/L] 

EcAc /Le 
(kN/m) 

1Ω  (Hz) 
( ) 

2Ω  (Hz) 
( ) 

125 2.3x108 6.0x107 16 4.61 12.5 
[0.10] 

4.437 x105 1.55 1.73 

 
Table 2. Properties of moving oscillator and resonant speeds. 

N 
 

d 
(m) 

P 
(kN) 

mw 
(t) 

mv 
(t) 

cv 
(kN-s/m) 

kv 
(kN/m) 

vres,1 

(km/h) 
vres,2 

(km/h) 
16 27 340 4.7 30.0 5.2 157 152 168 

 

4 NUMERICAL ILLUSTRATIONS 

Figure 1 shows a series of moving oscillators with equal intervals d are crossing a single-
span suspended beam at constant speed v. The properties of the suspended beam and sprung 
mass unit are listed in Tables 1 and 2, respectively. In Table 1, the symbol of iΩ  represents 
the ith modal frequency. As shown in Table 1, the first natural frequency of anti-symmetric 
mode of the suspended beam is lower than that one of symmetric bending mode. It means that 
the cable tension in the suspended beam due to dead loads can offer a strengthening effect on 
the first symmetric bending mode.  
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amax (g)=0.13g

 
Fig. 2 amax-v-x/L plot of the suspended beam due to moving loads 

For the purpose of illustrating the maximum acceleration response distributed along the 
beam span, a three-dimensional (3D) plot for the maximum acceleration response (amax) along 
the beam span (x/L) under the action of moving loads against various moving speeds (v) has 
been drawn in Fig. 2. Such a 3D plot will be called amax-v-x/L plot in the following examples. 
As can be seen from the two resonant peaks, the maximum acceleration response of the 
suspended beam at the speed of 152 km/h is governed by the anti-symmetrical modes that 
have been excited. Moreover, the maximum vertical accelerations of sprung masses passing 
the suspended beam with various speeds have been plotted in Fig. 3. The acceleration 
response of sprung masses for moving oscillators reaches a maximum value in the vicinity of 
152 km/h due to the train-induced resonant response of the suspended beam. 
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Fig. 3 Maximum acceleration of moving sprung masses. 
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(a)                                                              (b) 

Fig. 4 Histograms of ground acceleration of TAP003 Station: (a) vertical, (b) NS horizontal. 
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Fig. 5  Effect of time lags of moving oscillators on beam response. 

amax (g)=0.22g amax (g)=0.34g

 
(a)                                                                                (b) 

Fig. 6 amax-v-x/L plot: (a) vertical uniform support motion; (b) multiple support motions. 

4.1 Uniform support motion 

To investigate the influence of seismic ground excitations on train-induced vibration of 
suspension bridges, the far-field ground motions of TAP003 station recorded at the free-field 
station of Taipei during the 1999 Chi-Chi Earthquake in Taiwan [9] are used to simulate the 
seismic support inputs exerting the suspended beam. The histograms of acceleration of the 
ground motions, containing both the NS horizontal and vertical components, have been 
plotted in Figs. 4(a) and 4(b), respectively. As can be seen from the ground acceleration 
records depicted in Fig. 4(a), the intensive zone of vertical ground accelerations occurs early 
compared to that of horizontal components in Fig. 4(b) due to the fact that the primarily wave 
(P-wave) produced by earthquakes travels faster than the shear one (S-wave). 

Let us consider the special case of uniform support motion, i.e., u0= uL, d0= dL, with 
various time lags of tg for the train loads entering the suspended beam at the first resonant 
speed of vres,1 (=152km/h), Fig. 5 shows the maximum acceleration amplitude in amax-x/L plot 
will occur at the critical time lag of 12s, which is just inside the intensive zone of ground 
motions depicted in Fig. 4(a). In the following examples, the critical time of 12s, therefore, 
will be used as the time lag for the moving loads to start entering the suspended beam after 
earthquakes shake the vehicle-bridge system. Besides, as shown in the amax-v-x/L 3D plot of 



 9 

Fig. 6(a) and the corresponding maximum acceleration response of sprung masses in Fig. 3, 
the inclusion of uniform ground motions can totally amplify the acceleration amplitudes of 
the suspended beam and sprung masses even though the seismic support inputs are of far-field 
ground motions. Moreover, from the acceleration amplitudes plotted in Fig. 6(a), most of the 
symmetric modes are excited by the uniform ground support motion. 

4.2 Multiple support motions 

Due to possibly different soil conditions at local site of bridge towers depicted in Fig. 1, 
let us assume that the intensities of seismic ground inputs tranmitting into the right support 
have comparative attenuation, say, uL= 0.8u0, dL = 0.7d0, compared to those into the left one. 
Then the suspended beam will undergo the action of multiple-support excitations during 
seismic ground motions. Figure 10 shows the amax-v-x/L 3D plot for the train-induced 
vibration of the suspended beam shaken by the seismic excitations. By comparing the 
maximum acceleration amplitudes in Fig. 3 with those in Fig. 6(b), the amplification effect of 
multiple support excitations involving horizontal and vertical components is rather significant 
on the stiffening girder response. Especially in the vicinity of three-quarters span of the 
suspended beam at the first resonant speed vres,1, there exists a noticeable peak acceleration 
amplitude (= 0.34g). The reason is that as the last following loads of the train loadings pass 
over the three-quarters span with the resonant speed vres,1, the time-consuming is about tg+[(N-
1)d+0.75L]/vres,1 = 24s. It is just inside the intensive zone of horizontal seismic inputs at the 
histograms of ground acceleration shown in Fig. 6(b). Therefore, the last moving sprung mass 
experiences a fierce vibration transmitted from the vibrating beam. 

Moreover, the maximum accelerations of sprung masses traveling over the suspension 
bridge shaken by the non-uniform ground excitations have been plotted in Fig. 3 as well. As 
expected, the maximum acceleration responses of sprung masses are totally amplified, but the 
magnification effect of multiple support excitations on the maximum response of sprung 
masses becomes noticeable significance at low speeds. The reason is attributed to the fact that 
a series of sprung masses moving with low speeds (< 80 km/h) need spend much time 
crossing the suspended beam so that they will experience the action of intensive horizontal 
support excitations around the time of 25s. 

5 CONCLUDING REMARKS 

Considering non-uniform characteristics of multiple support excitations, the dynamic 
interaction responses of a single-span suspended beam subject to moving oscillators have 
been carried out using a pseudo-decomposition concept and a rigorous incremental-iterative 
procedure involving the three phases of predictor, corrector, and equilibrium-checking. From 
this study, the following conclusions are reached: 
1. Instead of updating the structural matrices with time-dependent coupled nature for the 

beam-oscillator generalized systems at each time step, this study treats all the coupled 
terms as pseudo-forces and converts the coupled equations into a set of equivalent 
uncoupled equations. Then, an incremental-iterative procedure for nonlinear dynamic 
analysis is employed to solve these equivalent equations in an accurate way. 

2. From the exact solution for the pseudo-static response, it indicates that non-uniform 
horizontal seismic inputs may amplify the response of suspended beams significantly. 
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Such an effect is often neglected by the assumption of uniform seismic ground motions in 
conventional design of bridge structures. 
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