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Summary. A new nonlinear stress resultant global constitutive model for RC panels is 

presented. Concrete damage, concrete stress transfer at cracks and bond-slip stress are the 

main nonlinear effects identified at the local scale that constitute the basis for the 

construction of the stress resultant global model through an analytical homogenization 

technique. The closed form solution is obtained using general functions for the previous 

phenomena.  
 

 

1 INTRODUCTION 

Industrial buildings, in particular Nuclear Power Plants (NPP), are subjected to severe 

seismic requirements. These facilities, generally built in Reinforced Concrete (RC), have 

large dimensions and therefore time-expensive dynamic analyses are necessary. The use of 

global modeling approaches, which relate the stress resultant    with the generalized strains 

   using relative big size finite elements of RC material, can assure reasonable computational 

costs, numerical efficiency and robustness. This type of modeling strategy is often used in 

civil engineering design offices adopting linear elastic constitutive laws. However, recent 

requirements for NPP have led to the use of more realistic RC non-linear models.  

In this sense, two global nonlinear constitutive models for RC shells have been recently 

introduced in the Finite Element  (FE) software Code_Aster [1], commonly used for the static 

and dynamic (including seismic) analysis of industrial buildings in France and, more 
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specifically, for NPP. Initially, the GLRC_DM model [2] based on global damage variables 

describing the mechanical non-linearities in the entire Serviceability Limit State (SLS) 

domain (for moderate seismicity regions) was developed, but it was soon observed that this 

approach underestimates the energy dissipation for the case of cyclic loadings, even though 

the stiffness reduction effect in RC building natural frequencies is quite well reproduced. The 

performance was significantly improved considering the debonding between steel and 

concrete through a numerical homogenization procedure, developed in the DHRC model [3]. 

Both models are formulated according to the General Standard Materials Theory (GSMT) [4] 

within the framework of the Thermodynamics of Irreversible Processes (TIP) [5], allowing a 

well-defined energetic characterization and adapted for a time integration algorithm 

associated with a well-posed minimization problem. These choices ensure a high degree of 

robustness and versatility to any dynamic loading conditions that can occur at a RC building 

FE analysis. 

However, the previous global modeling approaches do not take explicitly into account 

phenomena of great importance for industrial facilities, (especially for confinement issues in 

NPP) such as crack apparition and evolution. The crack parameters (orientation, spacing and 

width) are thus often computed adopting suitable post-processing techniques. The limitations 

of this two-step procedure for the computation of the crack parameters as a post-processing of 

a FE analysis have been highlighted in [6], where the phenomenological constitutive model 

for cracked panels called Cracked Membrane Model (CMM) [7] has been used. 

Other phenomenological models are available in the literature, see for example [8]-[9]. In 

these approaches, cracking in RC panels is described by adopting suitable hypotheses or 

specific laws for the local scale physical phenomena that govern the nonlinear structural 

response. In general, they are only applicable to particular loadings (e.g. only for monotonic 

loadings) or states (e.g. only for a fully cracked panel) since they are developed and calibrated 

based on particular experimental campaigns (some exceptions exists, see the cyclic 

phenomenological model [10]). Furthermore, their numerical algorithms require iterations to 

fulfill the conditions at the local scale phenomena because the link between the local and 

global scales is not explicitly described. Therefore, their robust implementation at the global 

scale in a FE software is not straightforward. 

In this work, a novel global constitutive model for RC walls is presented taking into 

account three sources of non-linearities at the local scale: (i) concrete damage or micro-

cracking, which causes a reduction in the concrete stiffness through a damage variable, (ii) 

concrete macro-cracking with non-zero stresses at cracks and (iii) bond stresses caused by the 

relative displacement between concrete and steel bars. We describe the successive 

assumptions adopted in the model formulation. The obtained stress resultant    -     

generalized strains relationship takes into account the previous nonlinear phenomena as long 

as it is obtained by means of an analytical homogenization procedure where they explicitly 

appear. 

2 GEOMETRY OF THE RC PANEL 

Let us consider a RC panel of dimensions   ,    and width   submitted to in-plane loads 

(Figure 1). Flexural effects are not considered and consequently all the reinforcement grids 

can be merged at the mid-plane. The   and   axes define the direction of the two groups of 
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the steel bars, characterized by their diameters    and    and their spacings    and   , 

respectively. The three components of the RC panel are identified with the following indexes: 

  for concrete, and    and    for the steel bars in the   and   directions respectively. 

       

Figure 1: Geometry of the RC panel 

3 MATERIAL MODELING 

The steel reinforcement bars are supposed to be a one-dimensional medium and to carry 

only longitudinal forces. Therefore, they are modeled using a one-dimensional linear elastic 

constitutive law (since the interest domain of the present model is the SLS), with     the 

Young modulus and   the dyadic tensor product): 

           
                      (1) 

The global nonlinear response of the model has its origin at the three nonlinear phenomena 

at the local scale: concrete damage, apparition of macro-cracking (and development of stress 

transfer by concrete at cracks) and bond stress between concrete and steel rebars. 

Concrete damage, caused by the apparition and development of rather homogeneous 

diffuse micro-cracking, results in concrete stiffness reduction, introduced via an internal 

damage scalar variable  , directly affecting the concrete Young Modulus   . The relationship 

between the membrane stresses and strains (plane stress state, local concrete isotropic 

constitutive law) is expressed as follows:  
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Concrete cracking (apparition of macro-cracks) is seen as localized concrete displacement 

discontinuities   (     ) in the normal-to-crack direction (or crack width)    and in the 

tangential direction   . The apparition of a macro-crack occurs when the maximum principal 

concrete stress   
  reaches the concrete tensile stress    . In other words, the adopted macro-

cracking criterion is the classical Rankine criterion expressed as: 
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This criterion separates the behavior of the RC panel in two different phases: the uncracked 

and the cracked one. The cracked phase can also be divided in two parts: the crack formation 

(some cracks exist but other appear with increasing loading) and the stabilized crack phase 

(no more cracks appear even with increasing loading), see e.g. [11]. However, the crack 

formation phase can be considered to be negligible in a finite element with the usual modeling 

dimensions, and in this work only the uncracked and the stabilized cracked phases are 

considered. At cracks, the concrete stress transfer vector   is considered, which has a normal 

and a tangential component named    and    respectively. They both depend on the crack 

opening displacement field   and other internal variables noted hereafter   : 

   (        ) (4) 

Finally, bond stresses    (     ) transmitted from   and   reinforcement steel bars to 

concrete are at the origin of the tension stiffening effect. They appear when a relative slip 

  (     ) or steel-concrete debonding, associated with internal variables   , occurs: 

     (        ) (5) 

4 ANALYTICAL HOMOGENIZATION OF THE CRACKED RC PANEL 

In this section an analytical homogenization of a cracked RC panel is performed. In a 

region of the panel far enough from non-regular boundary conditions, an identifiable 

periodicity has to be identified in order to define the Reference Volume Element (RVE) of the 

problem, that is the smallest volume able to represent the physical phenomena governing the 

response of the material and which is repeated periodically in the space. After the 

identification of the RVE, referring for instance to [12], the following steps, represented 

schematically in Figure 2, have to be done: 

i) Definition of the local stress fields            as functions of an applied stress 

resultant    on the RVE (stress localization). 

ii) Application of the local constitutive laws to obtain the local strain fields 

          .  

iii) Application of the compatibility equations and the averaging method to obtain the 

generalized strain field    from the previous calculated fields. 

 

                                   

Figure 2: Homogenization technique scheme 
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Even though it is more usual to formulate this scheme by beginning with the strain field, 

we prefer to take the stress resultant field to apply directly some useful equilibrium arguments 

in the formulation. In steps i) and iii) the local-global scales passage is done by means of the 

averaging method, based on the average value of a considered field in the RVE volume  : 

〈 〉  
 

| |
∫     
 

 (6) 

4.1 The Representative Volume Element  

The panel in the stabilized crack configuration of Figure 3 is considered as a periodic 

succession of RC ties separated by two consecutive cracks, with orientation  
 

 
    

 

 
 

from the   axis and mean spacing   . One of these straight ties is chosen as the RVE of the 

problem, where we define the normal to crack   and tangential   axes as follows: 

 

 

Figure 3: Representative Volume Element of a cracked panel 

Within the RVE, we adopt the assumption that all fields are constant in the   direction 

(they do not vary within the width  ), and in the   direction (since the RVE dimensions in the 

  direction is the crack spacing           and the boundary conditions at cracks are 

constant); the fields depend thus only on the   dimensionless coordinate. Moreover,     

constitutes a symmetry plane. Under these assumptions, the average value (6) of any field in 

the RVE is calculated according to: 
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The steel bars are considered uniformly distributed in the RVE, since             and 

the continuum stress fields    ( ) (          ) are considered into the entire RVE. Only 

surface forces are applied at the limit with the bordering RVE and the    stresses are 

transmitted. Under the previous assumptions a constant stress resultant is defined on the RVE: 
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4.2 Stress resultant localization 

The stress resultant localization (see Figure 2) consists in calculating the local stress fields 

in the RVE when a stress resultant    is applied. In the present case, it consists on 

determining nine unknowns: the three planar components of the three (concrete and   and   

steel bars) components local stress fields. 

First, we define the concrete and   and   steel bars local stress field averages with the 

equation (6) : 

〈  〉  〈  〉  
 

 

|  |
∫   

  

                  (9) 

with    the volume of component   in the RVE (            ). The stress resultant 

can be expressed as: 

   
 

| |
∫  
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  〉     〈 
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where the volume fractions    have been used: 

   
|  |

| |
                 (11) 

In the considered RC panel they can be calculated as: 

    
   

 

    

          
   

 

    

                   (12) 

Equation (10) can be expressed, in a closed form (true in any point, not only for the 

stresses averages in the RVE) by using (8): 

     (   
 ( )      

  ( )      
  ( ))         (13) 

Second, the equilibrium equation for the concrete component in the entire RVE reads: 

    ( )    ( )    (14) 

where   stands for the divergence operator and   ( ) for the volume forces vector (only 

caused by a diffuse action by bond stress from steel bars on the concrete domain), which can 

be obtained  from the equilibrium in a differential volume: 

  
  

   ( )   

    

 (15) 

Finally, according to the steel constitutive law (1) the two non-axial components of   and 

  rebars stress fields vanish. These four equations are added to the three equations from the 

global-local relationship (13) and the two from the concrete equilibrium (14) to form a nine 

equations system that determines the local stress fields: 

{

     (   
 ( )      

  ( )      
  ( ))

    ( )    ( )   

   
  ( )     

  ( )     
  ( )     

  ( )   

 (16) 



M. Huguet, F. Voldoire, P. Kotronis and S. Erlicher. 

 7 

The two boundary conditions for the two differential equations of the concrete equilibrium 

stem from the definition of concrete stresses at cracks: 

{
   

 (    )    

   
 (    )    
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4.3 Local strain fields 

The concrete and steel reinforcement local strain fields are obtained by applying the 

constitutive models (1) and (2) to the obtained local stress fields of the previous section: 
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4.4 Compatibility of strains 

For a medium with no displacement discontinuities in the RVE, the membrane generalized 

strain tensor    is given for any displacement field   by the direct application of (6): 

   〈 ( )〉  
 

| |
∫  ( )   
 

  (24) 
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When a displacement discontinuity ⟦ ⟧ on a particular regular boundary   within the RVE 

is considered (denoting by   the local unit normal vector on   and by    the symmetric 

dyadic tensor product), the following amendment of the previous expression is made 

(referring to the Stokes’ theorem): 

   
 

| |
(∫  ( )   

 

 ∫ ⟦ ⟧       
 

)  (25) 

Equation (24) is used for the calculation of    
  and    

  from   and   steel bars strain fields 

respectively, while (25) is used for calculating the three components of    from the concrete 

local strain field, with ⟦ ⟧  the displacement discontinuity at cracks  : 

{
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where the equivalent strains due to cracks in the     coordinates system are calculated as: 
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The averages of the local strain fields (21), (22) and (23) are calculated with (7) and 

inserted in (26). A five equations system linking the stress resultants    to the generalized 

strains    and the internal variables is obtained: 
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where the average bond-slip stress is defined:  

  
  〈∫   ( )  

 

| |

〉  ∫ ∫   ( )  
 

| |

  
 

 

          (29) 

Details about these developments and the complete thermodynamic formulation of the 

general model can be found in [13]. We briefly describe hereafter a particular one-

dimensional case. 

5 EXAMPLE: A ONE-DIMENSIONAL DAMAGE MODEL  

As an example of application of the developed general model, one of the simplest 

particular cases is reproduced hereafter: a one-dimensional damage model where crack 

development and bond stresses are not explicitly taken into account. The GLRC_DM [2] 

damage approach accounting for a constant slope in the       relationship while damage 

evolves is adopted.  
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First, we solve the equations system (28) for a member reinforced only in the   direction 

(     ) submitted to    
  stress (   

     
   ). Considering no distortion (   

   ) and 

that cracks appear orthogonally to the   direction (   
 

 
), the following    

     
  

relationship can be obtained: 

   
    (         

       
   

      

  

) (30) 

The expression for the crack opening is also obtained: 

      (   
  

  

  

 
        

 

      

) (31) 

In a damage model where no crack opening is taken into account, bond stress between 

concrete and steel vanishes, and thus    and   
  are set to zero in (31), obtaining the following 

value for stress   : 

      
    (32) 

Using the previous condition and adding the dependency of the concrete Young modulus 

with the scalar damage variable  , constitutive relationship (30) reads: 

   
    (           ( ))   

  (33) 

The adopted free energy density is: 

 (   
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(           ( ))(   
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The energy release rate reads (assuming   
 ( )    and   

  ( )   ): 
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 )  (35) 

The yield function is (assuming no hardening): 

 ( )  | |       (36) 

Then the tangent slope   ( ) is deduced: 
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In the damage evolution phase, 
  

    
  is obtained with the  ̇      consistency condition: 
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And finally the slope of the strain-stress resultant curve reads: 

  ( )  
    

 

    
 

            (  ( )  
 (  

 ( ))
 

  
  ( )

) (39) 

The slope in the damage evolution phase in GLRC_DM model is constant and it is noted as 

     for compression loadings and      for tension ones. Thus, from (39), the   ( ) function 

has the form: 
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  ( )   (   
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(40) 

with   ,    undefined parameters. 

This model is applied to the experimental test described in [14], consisting in a one-

dimensional RC member      length,            section, reinforced with 4 rebars 

(        diameter) and Young modulus           , and with a concrete 

characterized by an initial Young modulus             , tensile strength             

and compressive strength         .      and      parameters are set to           and 

        respectively, and    is set to  . Finally, we use           and        in order 

to set the damage beginning at     for tension loadings and      for the compression ones.  

The comparison of Figure 4 (a) between the experimental and the numerical results shows 

a quite good agreement. However, dissipation is underestimated as long as the hysteretic 

experimental response is not well reproduced. In [13] it is showed that the dissipation can be 

better assessed for the tension loading domain when the developed model in section 4 is 

applied for the case where crack opening is allowed and modeled using suitable functions for 

bond stresses and concrete stress transfer at cracks; the obtained results with this model are 

also plotted in Figure 4 (b). 

 

 

Figure 4: Comparison between numerical and experiment results for a one-dimensional RC member 

6 CONCLUSIONS 

A general nonlinear constitutive model for RC panels has been developed. Nonlinear 

phenomena at the local scale (concrete micro and macro cracking, steel-concrete debonding) 

appear in an explicit manner by means of general functions on the global formulation of the 

model as a result of an analytical homogenization technique. A particular one-dimensional 

case is finally presented in order to show the applicability of the model. 
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