
11th World Congress on Computational Mechanics (WCCM XI) 
5th European Conference on Computational Mechanics (ECCM V) 

6th European Conference on Computational Fluid Dynamics (ECFD VI) 
E. Oñate, J. Oliver and A. Huerta (Eds) 

 
 
 

1 
 

A MULTICRITERIA METHOD FOR TRUSS OPTIMIZATION 

N. T. TRAN*, M. STAAT*, G. E. STAVROULAKIS† 

* Aachen University of Applied Sciences, Biomechanics Laboratory, 
Institute of Bioengineering, Heinrich-Mußmann-Straße 1, 52428, Jülich, Germany 

{trinh.tran, m.staat}@fh-aachen.de 
www.fh-aachen.de/forschung/institut-für-bioengineering/ 

 
† Technical University of Braunschweig, Institute of Applied Mechanics, 

Bienroder Weg 87, Gebäude 1411, Campus Nord, 38106 Braunschweig, Germany  
and Technical University of Crete, GR-73100 Chania, Greece 

 
Key Words: Sizing Optimization, Limit and Shakedown Analysis. 

 

Abstract. We propose a multicriteria approach to the optimization of trusses. Stress and cross 
sectional areas of bars are considered as independent variables. This is a distinguishing point 
of this method. Using two independent variables makes the equilibrium equations become 
nonlinear. The problem is solved by the Optimization Toolbox of Matlab. In this paper, we 
consider the nine-bar truss of as an example. 

 

1 INTRODUCTION 
The most popular method to treat problems of elastic analysis, limit analysis, shakedown 

analysis and problem of optimal design is with an optimization loop over the solution of the 
structural problem. The structural problem can be formulated as a convex optimization 
problem. In this work, we present an approach which combines both optimizations in a 
multicriteria problem. We demonstrate the idea for the example of truss structure using 
stresses as variables. The condition of the minimum of the strain energy is adopted to give 
enough equations for solving the problem. 

2 ELASTIC ANALYSIS OF TRUSSES 
We consider linear truss (no change of the angle between bars after deformation), if 

stresses or internal forces of the bar are considered as unknowns, then the elastic analysis 
problem is written as:  

min (the strain energy in terms of the member forces or the stress form) (1) 

s.t.:     the equilibrium equations written for nodes having Degree of Freedom  
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Figure1: A truss structure 

To understand the above formulation, without loss of generality, we consider this following 
simple example: a truss is subjected to an external load P  as shown in Figure 1. We wish to 
find the member forces N1, N2, N3, N4, N5 of the trusses. The problem for the elastic analysis 
of trusses is now considered as an optimization problem as follows:  
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By using the Lagrange multiplier method, we can write: 
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where iλ  are the Lagrange multipliers and are unknowns as well. The condition of the 
minimum of (3) is written as: 
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(4)) 

 
The whole system has 9 equations with 9 unknowns, which allow us to determine member 

forces N1, N2, N3, N4, N5 and λi. It can be easily seen that λ1, λ2 are the displacements of node 
2 and λ3, λ4 are the displacements of node 4 in x and y directions, respectively. The elastic 
problem is now analyzed by solving the above nine equations to get internal force of bars and 
the displacements of nodes as well. Solving system of the above nine equations is equivalent 
to deal with problem (1). Afterwards, we will treat directly the problem of elastic analysis by 
analyzing problem (1). 
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3 MINIMUM VOLUME OF TRUSSES AT ELASTIC STATE 
Consider linear trusses having n bars. li, ti, si are the length, cross sectional area and stress 

in ith bar. In this problem, the objective function is the minimum of volume. Constrains 
include the minimum of the strain energy, the equilibrium equations written for the nodes 
with degrees of freedom, stresses of bars not exceeding an allowable stress and the condition 
for non-negative of cross sectional areas. The formulation is as follows: 

1
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n

i i
i

l t
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where ixα  is the angle between thi − bar with x-axis, 2/πα ≤ix ; 

jyjx ff ,  are applied loads acting on thj −  node in x and y direction; 

jyjx nn ,  are number of nodes having degrees of freedom on x and y directions, respectively  

ijn  is number of bars connected to j-th node 
E  is the Young's modulus, as  is the allowable stress of the material 

As the stresses and cross sectional areas of each bar are independent parameters, the truss 
optimization problem at elastic state is written as follows: 
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The equilibrium equations (a,b) are nonlinear. It is emphasized that the above problem is a 
multicriteria problem [p181, 5]. 

4 PLASTIC LIMIT ANALYSIS 
In the problem of limit analysis, loads applied on structures increase proportionally. Limit 

loads are unknown. The yield limits of trusses are given by the tensile yield stress and 
compressive yield stress, for simplicity, we assume that they have the same magnitude, 0s . 
According to lower bound theorem, similar to the problem (5), this problem is formulated as: 
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Where µ  is the load factor; 0s  is the yield stress of the material and 0t  is the given cross 
sectional area which is assumed to be the same for all bars. 

5 MINIMUM VOLUME OF TRUSSES AT PLASTIC LIMIT STATE 
In this problem, the cross sectional area of bar and limit load are unknowns. Therefore, 

instead of using the condition minV , we use another weak condition in the constraints: the 
volume of material of the truss is less than a given source of material 0V . In the formulation 
of the lower bound theorem, we can write: 
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where µ  is the load factor. It can be seen in the later examples, if 0V  increases then the limit 
load increases. 

6 SHAKEDOWN ANALYSIS. 
If a structure has been designed for a given load variation domain with plastic range of 

material response taken into account and plastic deformation range is stable, we have a 
shakedown problem. In case of a truss subjected to a load domain with NV vertices, according 
to the lower bound theorem the problem is formulated as: 
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Where 0t  is the given cross sectional area that assumed the same for all bars; 
r
is  is the 

residual stress; is  is the elastic stress in the ith bar correspondent with the type of the Lth 
loading, ( ),max maxi i L

s s= , ( ),min mini i Ls s= , 1,2, ,L NV= … . 
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7 MINIMUM VOLUME OF TRUSSES AT SHAKEDOWN STATE 
Similar to the problem of minimum volume of trusses at limit state the cross sectional area 

of bar and shakedown load are unknowns. Therefore, instead of using the condition minV , 
we use another weak condition in the constraints: the volume of material of the truss is less 
than a given source of material 0V . In the formulation of the lower bound theorem, we can 
write: 
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where ti is the cross sectional area; r
is  is the residual stress; is  is the elastic stress in the ith bar 

correspondent with type of Lth loading, ( ),max maxi i Ls s= , ( ),min mini i Ls s= , 1,2, ,L NV= … . 

The above formulations can be used for the problem of topology optimization of structures. 

8 ALGORITHM 
We use the function fmincon in the optimization toolbox of Matlab to solve the problems. 

The fmincon uses one of four algorithms: active-set, interior-point, SQP, or trust-region-
reflective. They permit us to solve the problems of non-linear programming. In the examples, 
active-set algorithm is used. 

9 NUMERICAL EXAMPLES 
Consider a nine-bar truss, the same as one in the work of Kaliszky [4]. The geometry of the 

truss is described in Figure 2. The Young’s modulus 21000E =  kN/cm2; the yield stress      
0 20s =  kN/cm2, the allowable stress, according to [4], 0 / 2as s= , is the same for all bars. 
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Figure 2: Nine-bar truss 

9.1 Volume of the truss at elastic state 
The problem is analyzed for 2 cases: the truss subjected one force and four forces 

  
Figure 3: The results for the optimal truss at elastic state 

In Figure 3, the numbers on each bar describes the internal force/cross sectional areas of 
the corresponding bars. In the case of single loading ( 400P = ), the bars 1,2,3,6,7,8,9 are 
removed. In case of multi loading the bars 2, 3, 6, 8, 9 are removed. It is noted that the 
distribution of the internal force ensures balance of the nodes. The solutions are correct 
because the equilibrium equations are satisfied for the nodes and the other constrains are 
satisfied as well. 

9.2 Limit Analysis 

Assuming the cross sectional area 0t  is the same for all bars in this problem. By changing 

0t  (inducing a change of the volume of the truss) we have different load factors. Table 1 
presents the relationship of the volume and the corresponding limit load. 
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Table 1. The relationship of volume and limit load 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: The limit analysis problem 

The dashed bars in Figure 4 are plastic yield bars, the others are elastic ones. In this case, 
the load P  acting on node 3, although the limit load and the corresponding volume are 
infinite but the number of the yield bars are the same (5,6,7,8). The equilibrium equations of 
the nodes and the other constraints are satisfied. 

9.3 Volume of the truss at limit state 
In this problem, we expect to find the limit load and the corresponding minimum of 

volume. By varying the source of material V0 the limit load and the corresponding volume of 
truss are achieved. Specially, the volume of the truss is equal to V0. The results shown in 
Table 2 indicate the relationship of volume and the corresponding limit load; the lower bound 
of the cross sectional area is 0 cm2.  
 

Table 2 The relationship of Volume and Limit load in case of single-loading (left hand side) and multi-
loading (right hand side) 
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Figure 5 describes the internal force and the corresponding area of each bar of the optimal 
truss. Consider the case in which the lower bound of the cross sectional area is equal to 
0 cm2, the optimal truss is statically determinate and all bars yield (Figure 5a). If the lower 
bound of the cross sectional area is 1 cm2, the optimal truss is indeterminate and some bars 
yield (Figure 5b). It is noted that the solution is correct because the equations of equilibrium 
are assured and the other constraints are satisfied. 

 
Figure 5: Distribution of internal force and cross sectional area with load factor 1µ = . a) Lower bound of cross 

sectional area is 0 cm2 . b) Lower bound of cross sectional area is 1 cm2 
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9.4 Shakedown Analysis 
Consider the truss which is subjected to two forces acting independently with the load 

domain as shown in Figure 6: 

 

 

Figure 6: Example for the shakedown problem 

We wish to find the shakedown load factor. The truss has nine bars with the same cross 
sectional area 0t . If 0t  varies then the different shakedown loads are obtained. Table 3 shows 
the relationship between the volume and the shakedown load. Similar to limit analysis, it can 
be seen that if the volume of the truss increases then the shakedown load also develops. 
 

Table 3: Relationship between the shakedown load factor and truss volume 

 
 
 
 
 
 
 
 
 
Table 4 presents the stresses in bars of the truss with 101080V =  cm3 and the load factor 

1µ = . The names of bars are written in the first column. The sum of elastic stress and the 
residual stress corresponding with A, B, C vertices of the load domain is written in the second 
column. The residual stresses of bars are shown in third column. 
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Table 4. Distribution of stress 

Bar Total stress ( e rσ σ+ ) R-stress ( rσ ) 
C A B 

1 4.1063 -8.3662 -4.3975 0.132 
2 -4.0959 6.1102 4.3975 -2.39 
3 5.9266 11.7368 19.518 -1.8626 
4 -5.9138 -11.4256 -19.518 2.1725 
5 11.4986 5.9157 20 -2.5837 
6 -11.5042 -8.5607 -20 -0.0617 
7 -10.1499 -12.0422 -20 -2.1885 
8 10.1413 13.9026 20 4.0505 
9 9.36 1.4703 9.3615 1.471 

 
The solution ensures the conditions of equilibrium and the other constraints (the total stress 
and the residual stress do not exceed yield stress 20 kN/cm2). 

9.5 Optimization for trusses at shakedown state 
The shakedown load and the corresponding volume of truss are obtained by changing the 

source of material V0. Particularly, the volume of the truss is equal to V0. The results are 
shown in the Table 4 which indicates the relationship between the volume and the 
corresponding shakedown load and the lower bound of the cross sectional area is 0 cm2. 
Similarly to the problem of optimization at limit state, we expect to find the shakedown load 
and the corresponding volume. 

 
Table 4: Load factor and the corresponding volume 

Vo (cm3) Load factor- µ Optimal Volume (cm3) 
186090 2.0 186090 
120270 1.5 120270 
82302 1.0 82302 
49113 0.6 49113 

 
Table 5 presents stresses in the bars of the truss for the case in which V = 82302 cm3 and 

the load factor µ=1. The names of bars are written in the first column, the sum of elastic stress 
and the residual stresses corresponding with A, B, C vertices of load domain are written in the 
second column. The residual stresses of the bars are shown in the third column. The cross 
sectional areas are listed in the fourth column of table. In this example, the bars 2, 3, 6, 7, 9 
disappear. The other remaining bars have no residual stresses. That means that the shakedown 
problem becomes the limit problem. 
The solutions are correct because: the equilibrium equations are satisfied for the nodes and 
the other constrains are satisfied as well.  
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Table 5. Distribution of stresses and the cross sectional area 

Bar Stress of bar (kN/cm2) Residual Stress (kN/cm2) Area (cm2) A B C 
1 -0.0000 -20.0000 -20 0 25.1945 
2 7.4577 13.9424 3.7669 -18.9229 0 
3 -19.6636 -16.7276 -16.6604 7.7477 0 
4 -9.0909 -10.9091 -20 0 73.904 
5 12.5000 7.5000 20 0 67.1855 
6 -18.4312 -16.0168 -19.9966 19.665 0 
7 5.0853 -19.8377 19.0267 4.5554 0 
8 0.0000 20.0000 20 0 20.776 
9 -13.3742 15.5616 4.3138 9.8977 0 

9.6 Comparison with the results of Kaliszky 
Table 6 shows the comparison of the volume of the truss between our results and the ones 

of Kaliszky. It is worth noting that Kaliszky used some assumptions (formulas 1, 2, 3 in [4]). 
 

Table 6. Comparison of volume of truss with Kaliszky. 

  Present Kalisky 

Elastic 1 force 54667 56000 
4 forces 160790 122000 

Limit 1 force 27333 29000 
4 forces 79674 78000 

Shakedown 2 forces 82302 85280 
 
 

10 CONCLUSION 
Using stresses and the cross sectional areas as design variables gives us a simple and 

effective multicriteria approach to solve problems of sizing optimization of trusses. The above 
formulations are also employed for problems of topology optimization of trusses. 
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