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Abstract. We present a spectral mimetic least-squares method which is fully conservative and
decouples the primal and dual variables.

1 INTRODUCTION

We consider the model diffusion-reaction problem

−∇ · A∇φ + γφ = f in Ω ,
φ = g on ΓD ,

n · A∇φ = h on ΓN ,
(1)

where Ω ⊂ Rn has a Lipschitz-continuous boundary ∂Ω = ΓD ∪ ΓN and n is the outward unit
normal to ∂Ω. We assume that A is a symmetric positive definite tensor and γ is a real-valued,
strictly positive function, i.e., there exist constants fmin, fmax, γmin, γmax > 0 such that

fminξ
Tξ ≤ ξTA(x)ξ ≤ fmaxξ

Tξ and γmin ≤ γ(x) ≤ γmax , (2)

for all x ∈ Ω and ξ ∈ TxΩ. The tensor A and the function γ describe material properties. For
instance, in heat transfer applications A is the thermal conductivity of the material and γ can be
related to the specific heat capacity.

Almost all published least-squares methods for (1) start with the reformulation of the gov-
erning equations into an equivalent first-order system

∇ · u + γφ = f in Ω ,
u + A∇φ = 0 in Ω ,

φ = g on ΓD ,
n · u = −h on ΓN .

(3)
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followed by setting up a least-squares functional

J(u, φ; f ) :=
1
2

(
‖∇ · u + γφ − f ‖2X + ‖u + A∇φ‖2Y

)
, (4)

and a least-squares principle, which is the following unconstrained minimization problem:

(u, φ) = arg min
v∈U, ϕ∈V

J(v, ϕ; f ) . (5)

We will refer to φ and u as the potential and flux variables. In (4)–(5) X, Y and U, V are
some appropriate data and solution spaces. The key juncture in the definition of a well-posed
least-squares method is to choose these spaces such that J is norm-equivalent, i.e., the residual
“energy” |||(u, φ)||| := J(u, φ; 0) defines an equivalent norm on the solution spaces:

C1

(
‖v‖2U + ‖ϕ|2V

)
≤ |||(v, ϕ)|||2 ≤ C2

(
‖v‖2U + ‖ϕ‖2V

)
, ∀v ∈ U, ϕ ∈ V . (6)

One common choice for which (6) holds is X = Y = L2(Ω), U = H(div,Ω) and V =

H1(Ω). Because strong coercivity is inherited on subspaces, one can approximate both solution
spaces by standard C0 elements. Since the inception of least-squares methods this has often
been quoted as one of their principal advantages. However, when formulated in this way, the
least-squares method is not conservative [9, 10, 14] and in some cases solutions can be very
inaccurate; see [4, 5] for examples.

In this paper we extend these ideas to develop a spectral mimetic least-squares method for
(1) that is locally conservative. Reformulation of the model problem into a four-field first-order
system involving two scalar and two vector variables allows us to shift material parameters from
the differential operators into a pair of constitutive relations. The four-field system prompts
the inclusion of two new equation residuals to the standard least-squares formulation (4). We
show that the resulting least-squares principle satisfies exactly the differential equations, while
the constitutive relations are satisfied approximately. The key idea then is to approximate the
four fields by finite elements from a discrete exact sequence. This allows us to satisfy exactly
the differential equations in the discrete setting and yields a locally conservative least-squares
method.

2 The model problem deconstructed

Our starting point is the following least-squares principle for the first-order system (3):

min
φ∈U,u∈VJ(φ,u) :=

1
2

(∥∥∥A−1/2 (u + A∇φ)
∥∥∥2

0
+

∥∥∥γ−1/2 (γφ + ∇ · u − f )
∥∥∥2

0

)
. (7)

To motivate the mimetic least-squares method we reformulate (1) into an equivalent first-order
system involving two scalar and two vector variables. To this end, we introduce two more
variables defined by

v = A−1u and ψ = γφ , (8)
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respectively. Then, the model problem (1) can be written as

∇ · u + ψ = f in Ω ,

v + ∇φ = 0 in Ω ,

v = A−1u in Ω ,

ψ = γφ in Ω ,
and

φ = g on ΓD ,

−n · u = h on ΓN .
(9)

As a result of these substitutions, the first two equations

∇ · u + ψ = f and v + ∇φ = 0 , (10)

have become independent of the material properties A and γ. The first equation expresses a
conservation law, which can be directly related to the fluxes u · n over the boundary of a volume
and the second equation expresses the fact that ∇ × v ≡ 0.

The two new equations, (8), are constitutive laws involving the material parameters. Note
that these laws do not involve derivatives. By introducing v as a new variable, we have u for the
flux and v for the velocity which allows for an independent discrete representation.

The two differential equations, ∇ · u + ψ = f and v + ∇φ = 0, only depend on the space
topology and, in the discrete setting, on the grid topology.

Motivated by these properties of mimetic methods we define a new least-squares functional
by augmenting (7) with the residuals of the “topological” equations (10)

J((φ, v), (ψ,u); f ) =

1
2

(∥∥∥A−1/2(u + A∇φ
)∥∥∥2

0
+

∥∥∥γ−1/2(γφ + ∇ · u − f
)∥∥∥2

0
+

∥∥∥v + ∇φ
∥∥∥2

0
+

∥∥∥∇ · u + ψ − f
∥∥∥2

0

)
,

(11)

and consider the associated least-squares principle

min
(φ,v)∈U,(ψ,u)∈V

J((φ, v), (ψ,u); f ) (12)

where U = H1(Ω) × (L2(Ω))n and V = L2(Ω) × H(div,Ω).
Our first result shows that (12) is a well-posed minimization problem.

Theorem 1. For homogeneous boundary conditions, g = h = 0, the least-squares functional
J((φ, v), (ψ,u); 0) is norm-equivalent:

J((φ, v), (ψ,u); 0) ∼ ‖u‖H(div,Ω) + ‖φ‖H1(Ω) + ‖v‖L2(Ω) + ‖ψ‖L2(Ω) . (13)

Proof. Owing to the assumptions (2) it suffices to prove the theorem for A = I and γ = 1.
Expanding the terms in the least-squares functional yields

2J((φ, v), (ψ,u); 0) = ‖u‖20 + 2‖∇ · u‖20 + 2‖∇φ‖20 + ‖φ‖20 + ‖v‖20 + ‖ψ‖20

+2(u,∇φ) + 2(∇ · u, φ) + 2(v,∇φ) + 2(∇ · u, ψ).
(14)
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The sum of the first two inner-products vanishes for homogeneous boundary conditions

2(u,∇φ) + 2(∇ · u, φ) = 2
∫
∂Ω

φ(u · n) dS = 0 .

For the remaining two inner products we use the Young’s inequality:

2(v,∇φ) ≥ −δ‖v‖20 −
1
δ
‖∇φ‖20 and 2(∇ · u, ψ) ≥ −δ‖ψ‖20 −

1
δ
‖∇ · u‖20 .

Combining with (14) yields

2J((φ, v), (ψ,u); 0) ≥ ‖u‖20 +

(
2 −

1
δ

) (
‖∇ · u‖20 + ‖∇φ‖20

)
+ ‖φ‖20 + (1 − δ)

(
‖v‖20 + ‖ψ‖20

)
The theorem follows by choosing any 1/2 < δ < 1. �

The next result provides some information about the conservation properties of (12).

Proposition 1. The minimizers of (11) satisfy (10) in L2(Ω).

Proof. The variations of the least-squares functional in (11) with respect to v and ψ yield the
equations∫

Ω

(v + ∇φ) · ṽ dx = 0 ∀ṽ ∈ L2(Ω) and
∫

Ω

(∇ · u + ψ − f )ψ̃ dx = 0 ∀ψ̃ ∈ L2(Ω) , (15)

respectively. The minimizers of (11) necessarily satisfy these equations, which implies that (10)
hold in L2-sense. �

Proposition 2. If (10) is satisfied in L2(Ω), then the equations for φ and u decouple.

Proof. The variations of the least-squares functional in (11) with respect to u and φ yield the
equations∫

Ω

γ−1∇ · u∇ · ũ dx +

∫
Ω

uA−1ũ dx −
∫

Ω

γ−1 f∇ · ũ dx =

∫
Ω

(∇ · u + ψ − f )∇ · ũ dx ,

and ∫
Ω

∇φA∇φ̃ dx +

∫
Ω

γφφ̃ dx −
∫

Ω

f φ̃ =

∫
Ω

(v + ∇φ)∇φ̃ dx ,

for all ũ ∈ H(div,Ω) and φ̃ ∈ H1(Ω), respectively. Proposition 1 shows that the right hand side
of these variational statements vanishes and therefore the equations for φ and u decouple. See
also [4] for a similar decoupling in a constrained formulation. �
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2.1 A mimetic least-squares method

Suppose that Uh = Gh×Ch and Vh = S h×Dh are compatible finite element discretizations of
U and V such that {Gh,Ch} and {Dh, S h} belong in a discrete DeRham complex [1, 6]. In other
words, there holds

∇φh ∈ Ch ∀φh ∈ Gh and ∇ · uh ∈ S h ∀uh ∈ Dh . (16)

We define the mimetic least-squares principle for (9) as the restriction of (12) to the discrete
spaces Uh and Vh:

min
(φh,vh)∈Uh,(ψh,uh)∈Vh

J((φh, vh), (ψh,uh); f ). (17)

Because Uh and Vh are conforming spaces, the norm equivalence (13) continues to hold and
(17) is a well-posed minimization problem. In addition, the least-squares solution is locally
conservative.

Theorem 2. Let {(φh, vh), (ψh,uh)} ∈ Uh × Vh be a minimizer of (17). Then,

vh + ∇φh = 0 and ∇ · uh + ψh = PS f (18)

where PS is the L2 projection on S h.

Proof. Consider first the gradient equation in (18). The minimizers of (17) necessarily satisfy
the equations ∫

Ω

(vh + ∇φh) · ṽh dx = 0 ∀ṽh ∈ Ch

Since ∇φh ∈ Ch there exists vh
φ = −∇φh and so, the first equation holds for the pair {φh, vh

φ}. By
the uniqueness of the least-squares minimizer it follows that vh = vh

φ.
Consider now the second equation in (18). The weak equation∫

Ω

(∇ · uh + ψh − f )ψ̃h dx ≡
∫

Ω

(∇ · uh + ψh − PS f )ψ̃h dx = 0 ∀ψ̃h ∈ S h ,

is a necessary condition for (17). Since ∇ · uh ∈ S h there exists ψh
u such that ∇ · uh + ψh

u = PS f .
Again, the uniqueness of the least-squares solution implies that ψh = ψh

u. �

Corollary 1. Let {(φh, vh), (ψh,uh)} ∈ Uh×Vh then the discrete equations for φh and uh decouple
in the variational formulation.

Proof. Take variations with respect to φh and uh to obtain weak forms similar to the ones in the
proof Proposition 2 and use the fact that Uh × Vh is a conforming subspace of (H1(Ω), L2(Ω))×
(L2(Ω),H(div,Ω)) which implies that Theorem 2 also holds on the finite dimensional subspace.

�
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Remark 1. Note that the results of Theorem 2 and Corollary 1 do not require Uh and Vh to be
defined on the same grid. Thus, in principle, one can implement the least-squares method (17)
using two different grid partitions of these spaces, i.e., we can consider formulations in which
the gradient and divergence equations live on different grids.

Remark 2. We started with a scalar diffusion-reaction equation and decomposed it into topo-
logical equations and constitutive equations. This adds two vector fields, v and u and one scalar
field ψ to the system, thus making the system approximately 6 times as large in 2D and 8 times
as big in 3D. Due to Proposition 2 and Corollary 1, we can solve all φ and u independently
and the solution of v and ψ can be obtained in a simple post-processing step which avoids the
solution of linear systems.

3 Spectral basis functions

The spectral basis functions used for the mimetic least-squares formulation are the ones
initially described in [7, 8, 11] and applied in [12, 13].

3.1 Nodal basis functions

Let f (ξ), ξ ∈ [−1, 1] be smooth function. The reduction of f (ξ) to a 0-cochain on the mesh
is given by

R0( f ) = { f0, f1, . . . , fN} , (19)

where fi := f (ξi) are its nodal values. Consider the Lagrange polynomials `0
i (ξ) given by

`0
i (ξ) =

N∏
j=0
j,i

(
ξ − ξ j

ξi − ξ j

)
.

We recall that Lagrange polynomials satisfy

`0
i (ξ j) =

 1 if i = j

0 if i , j
and

N∑
i=0

`0
i (ξ) ≡ 1 .

The corresponding reconstruction of f (ξ) from the 0-cochain R0( f ) is given by

I0( fi)(ξ) =

N∑
i=0

fi`
0
i (ξ) =⇒ R0

(
I0( fi)(ξ)

)
=

N∑
j=0

f j`
0
j (ξi) = fi ,

and so, I0 satisfies the consistency property, R0 ◦ I0 = I. For suitably chosen nodes ξi and
sufficiently smooth f (ξ) one can show that I0◦R0 = I+O(hp). Figure 1 illustrates this property.
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Figure 1: Nodal approximation (red curve) of f (ξ) = cos πξ(sin 5πξ + 0.25), (blue curve) for
N = 4, 8, 16, 20.

3.2 Edge basis functions

We consider again a smooth function f (ξ) but reduce it to a 1-cochain given by

R1( f ) = { f1, . . . , fN} where fi =

∫ ξi

ξi−1

f (ξ) , i = 1, . . . ,N . (20)

Define the edge Lagrangian basis, `1
i (ξ) by [7, 11]

`1
i (ξ) = −

d
dξ

i−1∑
k=0

`0
k(ξ), i = 1, . . . ,N . (21)

The edge basis functions have the property that∫ ξ j

ξ j−1

`1
i =

 1 if i = j

0 if i , j
, i, j = 1, . . . ,N . (22)

The reconstruction of f (ξ) from the 1-cochain R1( f ) is given by

I1( fi)(ξ) =

N∑
i=1

fi`
1
i (ξ) =⇒ R1

(
I1( fi)(ξ)

)
=

N∑
i=1

fi

∫ ξ j

ξ j−1

`1
i

(22)
= f j , (23)

which shows that consistency property, R1 ◦I1 = I, is satisfied. Figure 2 shows that for increas-
ing N the accuracy of the reconstruction improves, I1 ◦R1 = I+O(hp). Figures 1–2 also clearly
demonstrate the difference between I0, which matches the nodal values of a function and I1
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Figure 2: Edge basis approximation (red curve) of f (x) = cos πξ(sin 5πξ + 0.25) (blue curve),
for N = 4, 8, 16, 20.

which matches the edge integrals of a function. In particular, I1( fi)(ξ) does not pass through
the nodal values fi, shown by red circles in the figure, i.e., this reconstruction is not nodal.

With these polynomial representations it can be shown that δR0 = R1 d
dξ and d

dξI
0 = I1δ,

where δ is the coboundary operator which converts in this one dimensional case 0-cochains to
1-cochains, [3]

4 Discretization of the constitutive relations

Discretization of the constitutive laws

u = Av and ψ = γφ . (24)

presents an entirely different situation. Suppose for simplicity that A = I, γ = 1 and as before,
φ, v, u, and ψ are approximated by 0,1,2 and 3-cochains, respectively. Then, in order for (24) to
hold exactly we must have

I2(u) = I1(v) and I3(ψ) = I0(φ) . (25)

However, it is easy to see that relationships such as (25) may not even hold true if the same
function is reduced to different cochains and then reconstructed back, because reconstruction is
only an approximate left inverse of the reduction. As a result, in general

Ik ◦ Rk( f ) , I(n−k) ◦ R(n−k)( f ) .

Approximation of the smooth function f (x) = cos πξ(sin 5πξ + 0.25) by node and edge basis
functions in Sections 3.1–3.2 provides a simple illustration of this fact. The reconstruction from
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0-cochains I0 ◦ R0( f ) is the Lagrange nodal interpolant of f (x), i.e., a polynomial that has the
same nodal values on the mesh as f (x). On the other hand, the reconstruction of the same
function from 1-cochains, I1 ◦ R1( f ), matches the integral of f (x) on every element but not its
nodal values, i.e., I1 ◦ R1( f ) , I0 ◦ R0( f ). Figures 1 and 2 clearly show this distinction.

5 Results

In this section we want to illustrate the spectral mimetic least-squares method by means of a
test problem. We consider the problem with A = I and γ = 1,

−∇ · ∇φ + φ = f with f (x, y) = (2π2 + 1) sin(πx) sin(πy) and φ = 0 along ∂Ω ,

on the domain Ω = [−1, 1]2 with exact solution φex(x, t) = sin(πx) sin(πy).
The domain is divided in K × K elements. The solution is represented on the reference

domain (ξ, η) ∈ Ωre f = [−1, 1]2 and mapped onto the respective elements in (x, y)-coordinates.
We will use the following polynomial expansions for φ, ψ, v and u

φh(ξ, η) =

N∑
i=0

N∑
j=0

φi, j`
0
i (ξ)`0

j (η) ∈ PN,N ,

vh(ξ, η) =

N∑
i=1

N∑
j=0

ui, j`
1
i (ξ)`0

j (η) +

N∑
i=0

N∑
j=1

vi, j`
0
i (ξ)`1

j (η) ∈ PN−1,N × PN,N−1 ,

uh(ξ, η) =

Ñ∑
i=0

Ñ∑
j=1

pi, j ˜̀0
i (ξ) ˜̀1

j (η) −
Ñ∑

i=1

Ñ∑
j=0

qi, j ˜̀1
i (ξ) ˜̀0

j (η) ∈ PÑ,Ñ−1 × PÑ−1,Ñ ,

ψh(ξ, η) =

Ñ∑
i=1

Ñ∑
j=1

ψi, j ˜̀1
i (ξ) ˜̀1

j (η) ∈ PÑ−1,Ñ−1 ,

where N denotes the polynomial degree on the primal grid and Ñ denotes the polynomial degree
on the dual grid. Due to the decoupling at the continous level, Proposition 2, and at the discrete
level, Corollary 1, N and Ñ can be chosen independently. These polynomial spaces are compat-
ible with the gradient on the primal grid and the divergence on the dual grid, see also [6]. With
this polynomial reconstruction of the cochains, φh is globally C0, vh has tangential continuity
between elements, uh has normal continuity and ψh is discontinuous between elements.

5.1 Different polynomial representations on dual elements

In Remarks 1 it was pointed out that for a mimetic least-squares formulation it is not nec-
essary to have a strict one-to-one relation between dual variables. In this section we will show
that we can use different polynomial degrees on dual elements. In Figures 3, 4 and 5 results
are presented for the case N = Ñ + 1, which violates strict duality. The conservation laws are
still satisfied up to machine precision as shown in Figure 5, which was to be expected since
the conservation laws are represented on one mesh only and are completely insensitive to the
representation of the dual variables.
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Figure 3: h-convergence for φ and v for various polynomial orders on a uniform orthogonal
grid for the mimetic least-squares functional for the case N = Ñ + 1. The observed rate of
convergence is indicated by the black slope lines.
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Figure 4: h-convergence for u and ψ for various polynomial orders on a uniform orthogonal
grid for the mimetic least-squares functional for the case N = Ñ + 1. The observed rate of
convergence is indicated by the black slope lines.
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Figure 5: h-convergence for ∇× v and ∇ · u +ψ− f for various polynomial orders on a uniform
orthogonal grid for the mimetic least-squares functional for the case N = Ñ + 1.

6 Conclusions

In this paper a spectral mimetic least-squares formulation is presented for reaction-diffusion
problems. Topological operations like the gradient, curl and divergence can be satisfied up to
machine precision in this formulation. We conclude that two requirements are necessary for a
mimetic least-squares formulation:

1. The discrete space should allow for a discrete representation for the topological operators,
see Section 3;

2. The least-squares functional should decouple the topological relations from the metric-
dependent relations.

The mimetic least-squares method still leads to a positive definite system. We do not need to
satisfy an inf-sup condition. The use of standard C0-elements needs to be abandoned in favor
of basis functions which preserve the geometric degrees of freedom. These conclusions are
confirmed by numerical results presented in Section 5. A more extensive description of this
method and the application to non-affine grids can be found in [3].
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