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Abstract. This work presents a two-dimensional meso-scale model that captures some 
features of the mechanical behavior of heterogeneous material. First, it intends to describe the 
behavior of a metallic material using Von Mises elasto-plastic model with linear strain 
hardening. In rupture stages, some microcracks are created. Therefore, it is adopted a 
modified cohesive fracture model in order to simulate the cracking process until complete 
failure. The Representative Volume Element consists of elastic inclusions or cavities idealized 
as circular shapes placed into the metallic matrix in order to investigate the behavior of the 
RVEs. All simulations have been performed by employing the computational homogenization 
under the plane stress assumption in small strain regime. The average stress is obtained by 
imposing the macro-strain over the RVE and subsequently solving the microscopic initial 
boundary value problem for the defined boundary condition assumed. In summary, the 
proposed homogenization-based model is found to be a suitable tool for the identification of 
macroscopic constitutive response of this kind of material. 

 
 
1 INTRODUCTION 

Despite of the materials used in Engineering (metals, polymers, composites, concretes and 
woods) have different microstructures, at the macroscopic level similar characteristics of 
mechanical behavior are observed, as example: elasticity, viscosity, plastic strain, brittle 
rupture, ductile rupture, etc. Because of these similarities, constitutive models based on 
continuum mechanics and thermodynamics of solids applied to macroscopic analyses are 
usually proposed. However, it is important to note that the deformation and rupture processes 
take place at micro-scale level. In this context, a finite element procedure within a purely 
kinematical multi-scale framework proposed by [1] is used to simulate the mechanical 
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behaviour of ductile porous materials as well as reinforced Metal Matrix Composites 
(MMCs). The application of these materials is nowadays increasing due to their improved 
properties such as: high stiffness, low density and high tensile strength. On the other hand, 
these useful properties lead to poor ductility and fracture properties [2]. 

In the paper, a finite element procedure within a purely kinematical multi-scale framework 
has been used. For this purpose, a set of Representative Volume Elements (RVEs) is analyzed 
for initial stages of loading, when an elasto-plastic behavior is adopted and then, for rupture 
stages, when take place a phase debonding, an interface crack closure/opening and a cracking 
process in the matrix. Therefore, a modified cohesive fracture model to deal with ductile 
media is proposed to simulate the cracking process up to the failure. This model considers 
normal and tangential separation of the cohesive zone. Moreover, a Von Mises elasto-plastic 
model with linear strain hardening [3] is used to model the matrix behavior. 

This work presents the kinematical multi-scale framework in section 2. Then, the modified 
cohesive fracture model is briefly presented in section 3. After that, some numerical results 
related to the dissipative process in the RVE are shown in section 4. Finally, in section 5 some 
concluding remarks are presented. 

2 MULTI-SCALE CONSTITUTIVE MODELING 

Let us initially consider the macro-continuum depicted in Figure 1. For the RVE the 
volume is denoted by Vμ, the domain by Ωμ, the boundary by μΩ∂ . In order to perform the 

multi-scale analysis, one RVE must be associated with each point x of the macro-continuum 
where the stress vector computation is required. Besides, to solve the multi-scale problem one 
has to define the dimensions, discretisation and material properties for only one RVE, as these 
characteristics are the same for all RVEs defined in the macro-continuum. Note that in the 
case of having different materials in the macro-continuum, different RVEs should be defined. 
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Figure 1(a) Macroscopic continuum and RVEs. (b) RVE under plane stress. 

The domain of the RVE is assumed to consist in general of a solid part, s
μΩ , and a void 

part v
μΩ , being sv

μμμ ΩΩΩ ∪= . The void part v
μΩ  may consist of cracks and pores or may be 
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filled with a pressurised fluid. Note that the solid part of the RVE can be made of distinct 
materials (or phases), each one defined by a sub-domain, whose material can have different 
properties and be governed by different non-linear constitutive models. 

At any instant t, the strain and stress tensors at an arbitrary point x of the macro-continuum 
are assumed to be the volume average of their respective microscopic field (εμ or σμ), defined 
over the RVE domain Ωμ: 

ε(x, t) = ଵ୚ಔ ׬ ઽૄ(y, t)dV,ஐಔ  (1)

σ(x, t) = ଵ୚ಔ ׬ ૄ(y, t)dV,ஐಔ  (2)

where εμ(y,t)=∇suμ(y,t) is the symmetric gradient of the microscopic displacement field uμ of 
the RVE, while the microscopic stress ૄ = ૄ(y, t) can be written in terms of the 
microscopic strain, i. e., ࣌ݕ)ࣆ, (ݐ = ,ݕ)ࣆࢿ)࢟ࢌ  In this work, for the triangular elements .((ݐ
defined in the matrix, the constitutive functional fy is defined by the Von Mises elasto-plastic 
criterion while for the rectangular elements defined on the interface between matrix and 
inclusions, the stress are computed taking into account the fracture and contact phenomena. 

In general way, by the homogenization process we can also obtain the homogenised 
constitutive tangent modulus Cep, as follows: ݔ)࢖ࢋ࡯, (ݐ = ,ݔ)߲࣌ ,ݔ)ࢿ߲(ݐ (ݐ = 1ܸఓ න ,ݕ)ࣆ߲࣌ ,ݕ)ࣆࢿ߲(ݐ (ݐ ܸ݀ = 1ܸఓ න ,ݕ)ࣆࢿ)࢟ࢌ߲ ,ݕ)ࣆࢿ߲((ݐ (ݐ ܸ݀ஐഋஐഋ  

(3)

Observe that after solving the RVE equilibrium problem (for more details see [4]), the 
microscopic fields of strain εμ and stress ૄ are known and then the micro-to-macro transition 
can be made by using equations (2) and (3). 

On the other hand, any microscopic displacement field uμ, may be split into the following 
sum: ࢛ࣆ(࢟, ࢚) = ,࢞)ࢿ ࢚)࢟ + ෥࢛ࣆ(࢟, ࢚) (4)

In equation (4) the portion ε(x, t)y  varies linearly in y, and it is obtained by multiplying 
the macrocospic strain ε imposed to the RVE, which is constant, by the coordinates of point y. 
The portion u෤ஜ is denoted displacement fluctuation and represents the strain variation in the 
RVE, i.e., in the case of having uniform microscopic strain εμ, the displacement fluctuation u෤ஜ is null. Accordingly, the microscopic strain field is decomposed into the following sum: ݕ)ࣆࢿ, (ݐ = ,ݔ)ࢿ (ݐ + ,ݕ)ࣆ෤ࢿ (5) .(ݐ

where ε is constant and represents the homogeneous strain imposed to the RVE by the macro-
continuum and ε෤ஜ, that is denoted strain fluctuation field, can be written as ε෤ஜ(y, t) = ∇ୗu෤ஜ. 
Using the definitions in equations (1) and (5), and the linear variation of the strains fluctuation 
fields, it is possible to say that the macroscopic deformation ε is constant if the following 
condition is satisfied: න ෥࢛ఓ ⊗ୗ dAܖ = 0பஐಔ  

(6)
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Thus, writing equation (5) in the rate form, a microscopic strain rate is said to be 
kinematically admissible if: ࢿሶ ,ݕ)ࣆ (ݐ = ∇ௌ ෥࢛ሶ ࣆ = ሶࢿ ,ݔ) (ݐ + ෤ሶࢿ ,ݕ)ࣆ ෥࢛ሶ∀               (ݐ ࣆ ∈  Vμ (7)

On the other hand, the Hill-Mandel Principle of Macro-Homogeneity, which establishes 
that the macroscopic stress power must equal the volume average of the microscopic stress 
power over the RVE, i.e., it establishes the energy consistency between the macro and micro 
scales. Thus, at any state of the RVE characterised by a stress field μσ  in equilibrium, the 

Principle establishes that the following identity must hold for any kinematically admissible 
microscopic strain rate field εሶஜ: 

࣌: ሶࢿ ≡ 1ܸఓ න :ࣆ࣌ ሶࢿ ஐഋ,ܸ݀ࣆ  
(8)

Replacing equations (7) into (8), after some manipulations we can conclude that expression 
(8) holds if and only if each of the following integrals vanishes individually (see more details 
in [1]): ׬ ࡿ࢚ ∙ ෥࢛ሶ ܣ݀ࣆ = 0பஐഋ                        ∀෥࢛ሶ ࣆ ∈   Vμ (9)

׬ ܾ ∙ ෥࢛ሶ ܸ݀ࣆ = 0ஐഋೄ                 ∀෥࢛ሶ ࣆ ∈   Vμ  (10)

Further, it is assumed that at any time t the stress at each point y of the RVE is delivered by 
a generic constitutive functional f୷ of the strain history εஜ୲ (y) at that point up to time t. This 
constitutive assumption, together with the equations (9) and (10) and considering u෤ሶ ஜ = η 
leads to the definition of the RVE equilibrium problem which consists in finding, for a given 
macroscopic strain ε, a displacement fluctuation field  u෤ሶ ஜ ∈ Vμ  such that, for each instant t, 
the equilibrium equation below is satisfied: ׬ ࢟ࢌ ቀݔ)ࢿ, (ݐ + ∇ௌ ෥࢛ఓ(ݕ, ቁ(ݐ : ∇ௌܸ݀ࣁ = 0ஐഋೄ ࣁ∀  ∈ Vμ  (11)

In conclusion, for a given macroscopic strain history, we must firstly solve the RVE 
equilibrium problem defined by (11). With the solution u෤ஜ at hand, the macroscopic stress 
tensor is determined according to the averaging relation (2). 

Finally, the formulation is completed with the choice of an appropriate space Vμ, i.e., with 
the choice of kinematical constraints to be imposed on the RVE. In general, different choices 
lead to different macroscopic response functional, [5]. In this work, the periodic boundary 
fluctuations will be considered in the analysis addressed in Section 4. 

The periodic boundary fluctuations are typically associated with the description of media 
with periodic microstructure, [6]. Therefore, considering the description on two-dimensional 
problems, each pair i of sides of the RVE consists of equally sized subsets Γ୧ା and Γ୧ି  of ∂Ωஜ, 
with respective unit normals n୧ା and n୧ି , such that n୧ି = −n୧ା. 

The  kinematical constraint for this class of models is that the displacement fluctuation 
must be periodic on the boundary of the RVE. That is, for each pair {y+, y−} of boundary 
material points we have 
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෥࢛ݕ)ࣆା, (ݐ = ෥࢛ିݕ)ࣆ, (ݐ  { } μΩ∂∈∀ −+ y,y   (12)

3 COHESIVE FRACTURE MODEL 

Composite ductile materials, with inclusions or porous, are considered to be an elasto-
plastic media throughout the loading process, but on the ultimate loading regimes, these 
materials can present opening fractures governing the decohesion in the inclusion/matrix 
interface leading to a stiffness loss of the material and collapse. Therefore, in order to model 
the decohesion in the matrix/inclusion interface and fracture processes in the matrix, a 
modified cohesive fracture model is considered in this work. The cohesive fracture model has 
been originally proposed to simulate opening cracks in thin shells, [7]. A modified version of 
this model has been implemented in the finite element code on basis of multi-scale approach 
described in Section 2 to model the mechanical behavior of RVEs. This modified model is 
used in order to simulate the opening crack processes observed in ultimate loading processes 
in RVE of ductile porous media, mainly in the matrix/inclusion interface. 

For the formulation of mixed-mode cohesive laws, there is an introduction of an effective 
opening displacement: ߜ = ටߚଶߜௌଶ +  ௡ଶߜ

(13)

where δs and δn are the sliding and normal opening displacements, respectively. The 
parameter β assigns different weights to the sliding and normal opening displacements. 
Assuming that free energy potential φ depends on δ, the cohesive law is written as: ࢚ = ߜݐ ࡿࢾଶߚ) +  (࢔௡ߜ

(14)

The n vector is normal to the crack, δୗ is the sliding opening displacement vector located 
on the crack surface, t is the cohesive traction vector over the crack and t is a scalar effective 
traction. 

In this work we have modified the cohesive law proposed by [7] in order to simulate a 
fracture behavior in ductile media. The relations proposed are described in the following 
equations: ݐ = ௖݁ିఋ/ఋ೎ߪ ݂݅ ߜ = ௠௔௫ߜ ܽ݊݀ ሶߜ ≥ 0 (15)

ݐ = ௠௔௫ߜ௠௔௫ݐ ߜ ݂݅ ߜ < ௠௔௫ߜ ݎ݋ ሶߜ < 0 (16)

where e is the e-number, σc is the maximum cohesive normal traction and δc is a critical 
opening displacement. Also, in this work, the cohesive law presents an elastic unloading 
(equation (16)), but this limitation is not important for this work because we are dealing with 
increasing loading. Observe that we have tried to attend the methodology proposed by [7], 
where there is no fracture in the material a priori. But, when the effective traction on the 
possible fracture assumes value bigger than σc, the fracture is then created considering a 
gradual separation process in order to avoid the strong discontinuity in the material. Also, the 
critical opening displacement is approximately given by δୡ = 2Gୡ σୡ⁄ , where Gc is the mode 
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I fracture energy density. 
The conformity of the triangle finite elements before the nucleation of fractures is imposed 

by the addition of a penalty factor (λp), i. e., the cohesive contact finite elements are 
introduced on the boundaries of the triangle finite elements before the nucleation of the 
fractures. This strategy is called intrinsic cohesive elements [8] and it is easier to develop a 
mesh generation code because all cohesive contact elements are embedded in the discretized 
structure prior to the beginning of simulation.  

This penalty factor is a scalar value parameter. In practice use, high values for the penalty 
factor are adopted in order to obtain a sufficiently accurate approximation. 

In general way, this strategy intends to create stiffness in the node-pairs at the cohesive 
contact finite element in order to not allow the penetration of the crack surfaces. On the other 
hand, in tension regimes, this penalty factor effectively amounts to replacing the initial rigid 
portion of the cohesive law by a stiff linear response of the form [7]: ݐ = ߜ௣ߣ ݂݅ ߜ௣ߣ ≤ ௖ߪ (17)

For detection of the contact phenomenon, this work adopts the concept of the gap between 
the Gauss points of the cohesive contact finite element. In this work, the cohesive contact 
finite element are inserted between triangular finite elements. These kinds of models and 
finite elements supply accurate responses despite their simplicity, avoiding the need of an 
adaptive insertion of cohesive elements. Our goal is to model the mechanical behavior of 
composite materials that present plasticity and fracture processes using mathematical models 
as simplest as possible by means of a computational homogenization-based approach. 

The class of elements considered in this work is composed by two surface elements which 
coincide to the undeformed reference configuration of the RVE as shown in Figure 2. The 
cohesive contact element is defined with 4 (four) nodes being its geometry compatible with 
the two-dimensional triangular elements used to model the matrix and inclusion  phases. 

 

Figure 2 Geometry of cohesive contact finite element 

First, consider the local system of the finite element given by s (sliding direction) and n 

ξ

ξ

Γ

Γ
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(normal direction) coordinate axes (see Figure 2). The nodal displacements and internal forces 
vectors are given by: 

܍ܝ =
۔ۖەۖ
ۘۖۙuୣ(1)⋮uୣ(4)uୣ(5)⋮uୣ(8)ۓ

ۖۗ = ൜܍ܝା܍ିܝ ൠ    and    ۴ܑܜܖ܍ =
۔ۖەۖ
ۘۖۙF୧ୣ୬୲(1)⋮F୧ୣ୬୲(4)F୧ୣ୬୲(5)⋮F୧ୣ୬୲(8)ۓ

ۖۗ = ቊ۴ܑܜܖ܍ା۴ܑିܜܖ܍ቋ     
(18)

The ܍ܝା and ۴ܑܜܖ܍ା are the nodal displacements and internal forces vectors related to plus 
side Γାୣ. Similarly, the ܍ିܝ  and ۴ܑିܜܖ܍ are the nodal displacements and internal forces vectors 
related to minus side Γୣି . 

In order to compute the Gap Function in each Gauss point, the following expression is 
used: δୣ(ξ୧) = ܍ିۼ (ξ୧(s))܍ିܝ − ା܍ܝା(ξ୧(s))܍ۼ = uି(ξ୧) − uା(ξ୧), i = 1,2,3 Gauss point     (19)

where uି൫ξ୧൯ and uା൫ξ୧൯ are the displacements related to Gauss point on minus and plus 

surface, respectively. ܍ିۼ ൫ξ୧(s)൯ and ܍ۼା൫ξ୧(s)൯ are shape functions related to Gauss point on 
minus and plus surfaces, respectively. 

After some trite calculations, it is possible to obtain the internal force vector at the 
cohesive contact finite element as follows: ۴ܑܜܖ܍ା = l2ୣ න ା୘(ξ)܍ۼ ାଵ(S(ξ))ܜ

ିଵ dξ (20)

where le is the finite element length and ܜ(S(ξ)) is the cohesive traction vector on each Gauss 
point composed by sliding and normal components. It is important to note that each Gauss 
point contributes to the internal force evaluation by means of the traction vector computed 
either by the  cohesive law (if a crack is opened at that Gauss point) or by the contact law (if a 
crack is closed at that Gauss point). Therefore, the crack surfaces obtained can be not properly 
parallel. 

On the other hand, the RVE discrete non-linear boundary value problem is solved by the 
linearization of the following equilibrium equation: ࡾ + ࢛݀ࡲ݀ ݀෥࢛ = 0 (21)

where R is the out-of-balance force and dܝ෥ is the increment of displacement fluctuation field 

and calling K the tangent stiffness as ۹ =  Then, focusing on the cohesive contact finite .ܝ۴ୢୢ

element, the consistent tangent stiffness Ke is written as: 

ࢋࡷ = ࢋ࢛࢚݀࢔࢏ࢋࡲ݀ = ێێێۏ
ۍ −ࢋା࢛࢚݀࢔࢏ࢋࡲ݀ ࢋ࢛݀ି࢚࢔࢏ࢋࡲ݀ ۑۑۑے

(22) ې

Note that in eq (22) the component related to minus side must take into account the 
direction of cohesive traction vector at that surface. 
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4 NUMERICAL RESULTS 

All simulations carried out in this section have been performed by employing the 
computational homogenization under the plane stress assumption in small strain regime. 
Besides, the RVEs are squares, being their dimensions defined by L x L and their thickness 
given by L/10. The average stress is obtained by imposing the macro-strain over the RVE and 
subsequently solving the microscopic initial boundary value problem for the defined 
boundary condition assumed. It has been used 10-6 as tolerance factor in order to check the 
convergence of the non-linear procedure. 

The material properties assigned for the matrix are: Young´s modulus E = 200 GPa, 
Poisson´s ratio ν = 0.3, initial yield stress σy = 200 MPa and strain hardening modulus H = 30 
GPa. To simulate the elastic behavior of the inclusion E = 21 GPa and v = 0.2 have been 
adopted. Finally, the material parameters of the interface zone have been assumed as: δc = 
2x10-5 m, σc = 0.1 MPa, β = 0.707 and λp = 3x106. 

Here and after, it is understood that on the initial loading stage, the materials present an 
elastoplastic behavior whereas on the rupture stages the material presents a fracture process in 
the matrix and ITZ as well as an elastoplastic behavior. As boundary conditions, periodic and 
linear conditions have been considered. The applied load is given by a macro-strain tensor ε = 
[-0.00099; 0.0033; 0] divided in 10 increments, which represents an uniaxial tension in y 
direction (see Fig. 01). Initially, Fig. 3 shows the numerical results of a RVE that contains a 
ductile material. For the initial loading stage configuration 8 triangle finite elements have 
been used whereas for the rupture stage configuration, 684 triangle finite elements and 26 
cohesive contact finite elements have been considered. Note that the fracture process leads to 
a substantial decreasing of both the strength and material stiffness which reflects the complete 
failure of the microstructure. Besides, both the periodic and linear boundary conditions 
present the same numerical response for the plastic behavior adopted in this example. 
However, on the rupture stage the periodic condition presents a more flexible response when 
the fracture process takes place in the matrix zone. Once more, the increasing of the number 
of required iterations to solve the equilibrium problem is observed during the rupture loading 
stage although the proposed modeling has presented a quadratic rate of asymptotic 
convergence of the Newton–Raphson scheme. 

 
Figure 3 Progressive failure of the ductile material microstructure. 
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Now, a porous ductile material depicted in Fig. 4 is modeled. For the initial loading stage 
and the rupture stage have been adopted, respectively, 508 and 676 triangle finite elements. 
Besides, 22 cohesive contact finite elements have been considered for the rupture stage. The 
same behavior of the ductile material is observed in this case although the strength and RVE 
rigidity are smaller than the ones related to the ductile material due to the presence of the 
porosity. 

 
Figure 4 Progressive failure of the porous ductile microstructure (vf = 10%). 

The last analysis deals with metal matrix composite microstructure. For the initial loading 
stage configuration 511 triangle finite elements have been adopted to model the matrix 
whereas 73 triangle finite elements have been used to model the inclusion. For the rupture 
stage configuration, 16 cohesive contact finite elements have been also considered to model 
the ITZ (see Fig. 5). In this case only periodic boundary conditions have been assumed in the 
RVE. Note that the decohesion process becomes more evident in the mechanical behavior of 
the RVE when the opening fracture occurs at a intermediate stage. This process leads to a 
softening regime despite of having a plastic matrix and an elastic inclusion. Besides, the 
contact problems arise in the ITZ leading to the increasing of the number of required 
iterations. Soon after, when the RVE presents fractures on the matrix zone (rupture regime), a 
substantial decreasing of the material´s  strength evidences the complete failure of the 
microstructure. 
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Figure 5 Progressive failure of the metal matrix ductile microstructure (vf = 10%). 

5 CONCLUSIONS 

In this work, numerical applications of a computational homogenization-based approach 
proposed to model the mechanical behavior of heterogeneous materials have been presented. 
A cohesive contact finite element as well as a cohesive law have been described. This 
proposed modeling has been implemented in a 2D finite element code to analyze RVEs within 
a purely kinematical multi-scale framework developed by [1,5]. 

The qualitative responses are quite satisfactory evidencing the good description of the 
micromechanical behavior of the RVEs composed by ductile metal matrix considering porous 
or elastic inclusions. Besides, the debonding phase in this kind of material has been 
considered. The results show that the modeling developed in this work is potentially 
applicable in multi-scale analysis of composite structures in initial and rupture loading stages. 
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