
11th World Congress on Computational Mechanics (WCCM XI) 
5th European Conference on Computational Mechanics (ECCM V) 

6th European Conference on Computational Fluid Dynamics (ECFD VI) 
E. Oñate, J. Oliver and A. Huerta (Eds) 

 
 
 

PLATE BENDING ANALYSIS BY A MULTI-SCALE MODEL 
COUPLING BEM AND FEM, CONSIDERING DIFFERENT 

BOUNDARY CONDITIONS FOR THE RVE 

GABRIELA R. FERNANDES *, JOSÉ JÚLIO C. PITUBA* AND EDUARDO A. DE 

SOUZA NETO † 

*Civil Engineering Department Campus Catalão – Federal University of Goiás (UFG) CAC 
Av. Dr. Lamartine Pinto de Avelar, 1120, Setor Universitário- CEP 75700-000 Catalão – GO Brazil, 

gabrielar.fernandes@gmail.com 
 

† College of Engineering, Swansea University 
Singleton Park, Swansea SA2 8PP, United Kingdom  

E.deSouzaNeto@swansea.ac.uk   
 
Key Words: Multi-scale modelling, homogenization, boundary elements, plate bending. 

Abstract. A multi-scale modelling for analysing the bending problem of plates composed by 
heterogeneous materials is presented. The macro-continuum is modelled by the non-linear 
formulation developed in [1] of the boundary element method (BEM) taking into account the 
consistent tangent operator (CTO) and based on Kirchhoff’s theory. The micro-scale is 
represented by the RVE (representative volume element) being its equilibrium problem solved 
by the finite element formulation presented in [2, 3] that takes into account the Hill-Mandel 
Principle of Macro-Homogeneity  while the volume averaging hypothesis of the strain and 
stress tensors is used to make the micro-to-macro transition. The microscopic equilibrium 
problem consists of, given the history of the macroscopic strain tensor, finding the field of 
displacement fluctuation such that, for each instant t, the RVE equilibrium equation is 
satisfied. In the numerical example a narrow plate subjected to simple bending is analysed 
where is adopted a RVE with a void defined in its central and different boundary conditions 
are imposed to the RVE. 

1 INTRODUCTION 

The pre-existence of initial defects in the material’s micro-scale as microcracks and 
microvoids plays an important role in the stiffness of the structure or component. Moreover, 
in general, the materials, even the metallic, are heterogeneous at the micro and grain scale. 
The concrete, as example, has a very complex microstructure, since it is composed by 
different phases (or materials) that have different Young’s moduli and present different non-
linear behaviour. Besides, often the material microstructure is appropriately manipulated by 
adding certain constituents to a matrix phase, in order to change the material properties to 
attend specific applications. As any heterogeneity of the material as well as the microcracking 
initiation and propagation in the micro-scale affect directly the macro-continuum response, 
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modelling heterogeneous material in different scales is very important to better represent the 
behaviour of such complex materials [2-5]. In many situations the traditional 
phenomenological approach for constitutive description does not provide a sufficiently 
general predictive modelling capability. 

At micro-scale, the material behaviour is monitored individually to each RVE 
(representative volume element) that represents the microstructure, at grain level, of the 
macro-continuum at the infinitesimal material neighbourhood of a point (see [2, 3]). The 
strain related to the macro-continuum point is imposed to the cell (RVE) defined at micro-
scale and the micro-to-macro transition is made by applying a homogenization process, after 
solving the equilibrium problem at micro-scale.  

The boundary element method (BEM) has already proved to be a suitable numerical tool to 
deal with plate bending problems (see [1, 6]). The method is particularly recommended to 
evaluate internal force concentrations due to loads distributed over small regions that very 
often appear in practical problems. Moreover, the same order of errors is expected when 
computing deflections, slopes, moments and shear forces. Therefore, the use of BEM is very 
adequate to deal with dissipative phenomena in heterogeneous materials, such as strain 
localization, fracture process and plastic deformation on macro-scale level. 

In the present work, the non-linear BEM formulation for plate bending presented in [1] is 
used to model the macro-continuum, while to solve the equilibrium problem at micro-scale a 
FEM formulation (see [2, 3] ) has been adopted. The microscopic equilibrium problem 
consists of, given the history of the macroscopic strain tensor, finding the field of 
displacement fluctuation such that, for each instant t, the RVE equilibrium equation is 
satisfied. Depending on the boundary conditions adopted for this displacement fluctuation 
field in the RVE, different multi-scale models can be obtained, leading to different numerical 
responses. In the present work the following boundary conditions will be imposed to the 
RVE: (i) linear displacements, (ii) periodic displacement fluctuations and (iii) uniform 
boundary tractions. In general, the proposed modelling is an alternative tool to simulate the 
mechanical behaviour of the heterogeneous materials, like ductile and porous ductile 
materials. Besides, with the adoption of properly cohesive fracture model and plastic criterion, 
the proposed modelling will be able to deal with brittle materials, like concrete, in future 
works. 

2 THE NON-LINEAR PLATE PROBLEM 

The non-linear plate bending analysis, that represents the macro-continuum problem in the 
present work, is modelled by a BEM non-linear formulation discussed in details in [1] and 
based on Kirchhoff’s hypothesis. To define the plate bending problem, let us consider a flat 
plate of thickness t, external boundary г and domain Ω referred to a Cartesian system of co-
ordinates with x1 and x2 axes laying on its middle surface and x3 being the axis perpendicular 
to that plane. It is assumed that the plate supports only distributed load g acting on the plate 
middle plane, in the x3 direction. The variables related to the plate bending problem are the 
following ones: nV& (effective shear force rate); nM&  (bending moment rate); w&  (deflection 

rate); n,w&  (rotation rate), being (n, s) the local co-ordinate system, with n and s referring to 

the boundary normal and tangential directions, respectively. As the present work deals with 
non-linear analysis, all variables are expressed in rates, i.e., dt/dx)x( =& , their time 
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derivatives. The basic equilibrium equations for the plate problem will be omitted here, but 
they can be found in several works ([31]-[35])  

The bending and twisting moment rates ijm&  in the plate are obtained by integrating the 

Cauchy stresses ijσ&  across the plate thickness t, as follows: 

dzzm
/t

/t
ijij ∫−=

2

2
σ&&         (1) 

Note that in a multi-scale analysis ijσ&  is obtained after solving the RVE equilibrium 

problem. As this work only deals with small strain problems, the total strain will be split into 

its elastic and inelastic parts,eijε&  and p
ijε&  respectively, as follows: 

 p
ij

e
ijij εεε &&& +=                                                     (2) 

By assuming the Kirchhoff´s hypothesis, the total strain component for the bending 
problem is given by: ijij wx ,3 && −=ε , being ij,w&  the plate surface curvature. The moment rate 

predictor e
ijm& , often defined as elastic trial used in non-linear algorithms, can be written in 

terms of the total curvatures ij,w&  as follows:  

( )[ ]ijijkk
e
ij ,w,wDm &&& νδν −+−= 1                                                               (3) 

where ijδ  is the Kronecker delta, ( )23 112/EtD ν−=
 
is the plate flexural rigidity and ν is the 

Poisson’s ratio. 
Thus, the inelastic moment rate pijm&  is defined as: 

ij
e
ij

p
ij mmm &&& −=                                    (4) 

3 BEM ALGEBRAIC EQUATIONS 

Let us consider n1n ttt −= +∆ , a typical time step in the non-linear solution. The finite step 

boundary value problem consists of searching the solution at the time step end 1nt +  when this 

solution is known at the time step beginning nt . From Betti’s reciprocal theorem (see more 

details in [36]) we can obtain the following representation of deflections written for internal 
and boundary collocation points which is an exact integral representation: 
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where w*, V* and M*
 
are plate bending fundamental values of deflections, effective shear 

forces and boundary moments, NC are numbers of corners and Ωg 
is the plate loaded area; for 

the free term K(q) values see [1].  
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The integral representation for the curvature increment i,w l∆  can be obtained by 
differentiating equation (5) twice at an internal collocation point see more details in [1]. 

To obtain the algebraic equations linear elements with quadratic shape functions are 
adopted to approximate the four values defined along the plate boundary: w∆ , n,w∆ , nM∆  

and nV∆ . As two of these values are prescribed only two equations are required per node. One 

deflection equation is written for a collocation point defined along the boundary and another 
one is written for an external collocation very near the boundary. Besides, at boundary corners 
we may write extra equations as the reactions are preserved as unknowns.  

The inelastic moment increments ( p
jkm∆ ) will be approximated over the domain by using 

triangular cells where continuous or discontinuous linear shape functions are considered. For 
the cells sides defined on the external boundary, the nodes and collocations are placed inside 
the cells because of the discontinuity. To perform the non-linear analysis of plate bending, 
three equations of elastic trial moment increments ejkM∆ at each node are required to evaluate 

the stress field over domain. These equations are obtained from the curvatures by applying the 
Hooke's law (equation (3)). After selecting conveniently the collocation points and 
performing the relevant integrals over boundary elements and over cells, one obtains a set of 
algebraic equations given in terms of boundary values and inelastic moment increments, 
which after applying the boundary conditions can be written as (see more details in [1]): 

P
M mRLX ∆∆∆ +=                                                                            (6) 

where the vector X∆  contains the plate bending unknowns on the boundary and corners, L∆  
represents the elastic parts of these unknowns, MR  expresses the corrections due to the 
inelastic moment increment. 

We can also derive the following BEM algebraic equation for the actual moment increment 
M∆ (for more details see [1]): 

 ( ) mmSKCM p
MMM ∆∆∆χ∆∆ +−−=                            (7)  

where χ∆  is the curvature increment in the plate, MC  a matrix that contains the elastic 
constant matrices (obtained from equation 3) of all nodes defined in the plate; the inelastic 
moment increment vector Pm∆  is given by: mCm M

p ∆−∆=∆ χ ; MK∆  is the elastic solution 

given in terms of moment  increments, MS  gives the bending moment effects due to the nodal 

inelastic increments, Pm∆ . 
Observe that Pm∆ , em∆  and m∆  defined, respectively in equations (4), (3) and (1) are 

computed locally for a particular point, i.e., they are obtained taking into account only the 
actual curvature increment ijw,∆  and the actual stress tensor increment ijσ∆ related to that 

point. To obtain the non-linear solution for an increment n, the following equilibrium 
equation has to be satisfied: 

 0=− nM MK
n

∆∆             (8) 
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Replacing equation (7) into (8), one obtains the final algebraic relation to impose the 
equilibrium conditions over the time incrementnt∆ : 

 ( ) ( ) 02 =−−+−= nnnMMnMMnM mmCSCKR
n

∆∆χ∆χ∆∆χ∆        (9) 

After applying to the plate a curvature increment nχ∆  and obtaining the stress ( ijσ∆ ) 

distribution over the plate thickness for all nodes adopted in the domain discretization, if 
equation (9) is not satisfied, a residual moment RM non null will be computed, i.e., the 
increment is not elastic. Then, equation (9) will be solved by applying Newton-Raphson’s 
scheme, for which an iterative process may be required to achieve the macro-continuum 
equilibrium. Let us consider the iteration i where the curvature increment is known. The next 
trial increment, at (i+1), is obtained by finding the additive corrections 1i

n
+χ∆δ : 

11 ++ += i
n

i
n

i
n χ∆δχ∆χ∆                         (10) 

The corrections 1i
n

+χ∆δ  are computed after the linearization of equation (9) to give: 
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χ
 is the Consistent Tangent Operator (CTO) 

obtained by differentiating equation (9); )(iep
Mn

C is a matrix that contains inelastic tangent 

modulus [ ]ikep
mC (relating moments and curvatures) of all cell nodes. 

Observe that the actual values of the internal forces increment ljm∆  defined in equation (1) 

as well as the tensor [ ]ikep
mC are computed numerically adopting a Gauss scheme, for which a 

number of Gauss points has to be defined along the plate thickness. 

4 EQUILIBRIUM PROBLEM DEFINED AT MICRO-SCALE 

Let us initially consider the macro-continuum depicted in Figure (1), which in this work is 
represented by the plate, of characteristic length l,being x an arbitrary material point of this 
continuum and y an arbitrary point of the microscopic cell, called RVE (Representative 
Volume Element) (see [2, 3]). For the RVE, the volume is denoted by Vµ, the domain by Ωµ, 
the boundary by µΩ∂  and the characteristic length by lµ. In order to perform the multi-scale 

analysis, one RVE must be associated with each point x of the macro-continuum where the 
stress vector computation is required. As in the present work, for a particular cell node of the 
macro-continuum, the stress σ  has to be computed for a number of Gauss points defined over 
the plate cross-section one RVE has to be associated with each Gauss point defined over the 
plate thickness. 

It is assumed that the strain tensor ε(x,t) as well as the stress tensor σ(x,t) at a point x of the 
macro-continuum is the volume average of their respective microscopic field (εµ=εµ(y,t) or 
σµ=σµ(y,t)) over the RVE associated with x. That is, at an arbitrary instant t: 
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                                                                       (13) 

 
Figure 1 – Macro-continuum with a locally attached micro-structure 

Note that in equations (12) and (13), a microscopic quantity ( µε  or µσ ) over the RVE is 

mapped into a macroscopic quantity (ε  or σ ) by means of a homogenization technique using 
the volume average, where the tensors ε  and σ are referred to as the macroscopic or 
homogenised strain and stress, respectively. Besides, the microscopic stress can be written in 
terms of the microscopic strain as follows: σµ(y,t))= fy(εµ(y,t)), being fy the constitutive 
functional, which in this work can be defined by the Von Mises elasto-plastic criterion or by 

Hooke’s law if an elastic behaviour is adopted. Moreover, the microscopic strain µε  can be 

written in terms of the microscopic displacement field µu of the RVE as follows:

( ) ( )tyuty S ,, µµε ∇= , where s∇  denotes the symmetric gradient. 

By the homogenization process we can also obtain the homogenised constitutive tangent 
modulus Cep , as follows 
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===
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                              (14) 

Observe that after solving the RVE equilibrium problem, the microscopic fields of strain 

µε  and stress µσ  are known and then the micro-to-macro transition can be made by using 

equations (13) and (14). Besides, any microscopic displacement field µu , may be split into 

the following sum: 

( ) ( ) ( )t,yu~yt,xt,yu µµ ε +=               (15) 
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In equation (15) the portion yε  varies linearly in y, and it is obtained by multiplying the 
macroscopic strain ε  imposed to the RVE, which is constant, by the coordinates of point y. 
The portion µu~  is denoted displacement fluctuation and represents the strain variation in the 

RVE, i.e., in the case of having uniform microscopic strain µε , the displacement fluctuation 

µu~  is null. Accordingly, the microscopic strain field is given by: 

( ) ( ) ( )t,y~t,xt,y µµ εεε +=            (16) 

where ε  is constant and represents the homogeneous strain imposed to the RVE by the 

macro-continuum and ( ) µµε u~t,y~ S∇= is the strains fluctuation field. 

The necessary condition for a displacement fluctuation field µu~ to be kinematically 

admissible is that *K
~

u~ µµ ∈ , being *K
~

µ  the minimally constrained vector space of kinematically 

admissible displacement fluctuation of the RVE defined as: 

 

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=⊗≡ ∫
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where n denotes the outward unit normal field on µΩ∂ . 

From the Principle of Virtual Work and considering the Hill-Mandel Principle of Macro-
Homogeneity (see [2, 3]), which establishes that the macroscopic stress power must equal the 
volume average of the microscopic stress power over the RVE, we can obtain the following 
form of the equilibrium equation written in terms of displacement fluctuations: 

( ) ( )( ) ∈∀=∇∇+∫ ηηε
µΩ

µ 0dV:t,yu~t,xf SS
y

S

 Vµ                                      (18) 

where Vµ is a space of virtual displacements that satisfies Vµ 
*~
µK= . 

Finally, the formulation is completed with the choice of an appropriate space Vµ, i.e., with 
the choice of kinematical constraints to be imposed on the RVE. Therefore, the microscopic 
equilibrium problem consists of, given the history of the macroscopic strain tensor ε, finding 
the field ∈µu~&  Vµ such that, for each instant t, the equilibrium equation (18) is satisfied. In 

view of the arbitrariness of η, after discretising the RVE domain into elements, the following 
incremental microscopic equilibrium equation must hold for a load increment of time 

n1nn ttt −= +∆  and discretisation h, that allows one to find the fluctuation displacement

)n()n()1n(
u~u~u~ µµµ ∆+=

+ :  

( ) 011
1 =+= ∫ ++

+ dVu~BfBG
h

)n(ny
Tn

h

µΩ
µε                                      (19) 

where B is the global strain-displacement matrix, 
h

µΩ denotes the discretised RVE domain. 
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If the load increment n is non-linear, equation (19) is solved by applying the Newton-
Raphson Method which consists of finding the fluctuations corrections 1iu~ +

µδ  for iteration i+1, 

such that: 

01 =+ +iii u~KF µδ                                            (20) 

where F is the tractions vector and K the tangent stiffness matrix of the RVE; denoting Be the 

element strain-displacement matrix, Ne the number of finite elements and eDµ  
the constitutive 

tangent modulus of the element e,  F and  K are defined as: 
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the consistent constitutive tangent matrix field over the RVE 

domain.  

After computing the corrections 1iu~ +
µδ  from equation (20), the next trial displacement 

fluctuation field to be considered in iteration i+1  related to the micro-continuum is given by: 
1ii1i u~u~u~ ++ += µµµ δ . 

The homogenised stress is computed by equation (13) which after discretizing the RVE 
domain into elements, for a given increment of time n1nn ttt −= +∆  used to model the loading 

incremental process, it can be written in the following incremental form: 
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where denoting u and v as arbitrary vectors, the following definition 

( )uvvuvu s ⊗+⊗=⊗
2

1

 
is used to compute the integrals defined in (23); e

1nt +  is the 

tractions across the RVE external boundary (equation 21) and y represents the coordinates 
vector of a point in the RVE. 

The RVE formulation described so far is completed with the choice of an appropriate space 
Vµ, i.e., with the choice of kinematical constraints to be imposed on the RVE what leads to 
the following three different classes of multi-scale models: 

 
(i) Linear boundary displacements 
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In this model the displacement fluctuations µu~ are assumed null along the external 

boundary µΩ∂  , i.e.,  the displacements are linear on the boundary µΩ∂ : 
( ) ( )yt,xt,yu εµ =

 µΩ∂∈∀y                 (24) 

and the space Vµ is chosen as Vµ ( )






 ∂∈∀=∈= µµµµ Ωyt,yu~/K

~
u~ * 0

.  

(ii)  Periodic boundary fluctuations 

This model is usually adopted to represent a media with periodic microstructure. In fact, it 
can be shown that any material behaviour presents a periodic response if fine meshes are 
considered. In order to define its fluctuation displacements field, consider a square or a 
hexagonal RVE. For each side +iΓ  , whose normal direction is +in , corresponds to a equally 

sized −
iΓ  with normal direction −

in , being −+ −= ii nn . Similarly, for each point +y defined over 
+

iΓ  there is a point −y  over the side −
iΓ . In this case, it is assumed that the displacement 

fluctuation must be periodic on the boundary of the RVE, i.e., for each pair {+y , −y } of 

points we must have: 
( ) ( )t,yu~t,yu~ −+ = µµ   { } µΩ∂∈∀ −+ y,y                       (25)

 

 

Besides, in the corners the displacement fluctuations are assumed nulls. Therefore, in this 

model the space Vµ is adopted as: Vµ ( ) ( ) { }








∂∈∀=∈= −+−+
µµµµµ Ωy,yt,yu~t,yu~/K

~
u~ * .    

(iii) Uniform boundary traction 

This model is also denoted as the minimally constrained model, as the space Vµ is adopted 

coincident to the space*~
µK  (the minimally constrained vector space of kinematically 

admissible displacement fluctuation of the RVE) defined in equation (17), i.e.:Vµ 
*K

~
µ= .

  

Considering that the tractions te over µΩ∂ can be written as ( )nt,yt e
µσ= , being n the normal 

direction to the boundary, in order to satisfy the Hill-Mandel Principle as well as equation 

(17) where the space *K
~

µ  is defined, we conclude that the distribution of stress on the RVE 

boundary must be constant, i.e. ( ) ( )tt,y µµ σσ = , µΩ∂∈∀y  .  

Let us now to define the macroscopic or homogenised constitutive tangent modulus Cep 
which is computed by equation (14). After the RVE discretisation into elements, for an 
iteration i of the increment n of time used to model the loading incremental process (being 

n1nn ttt −= +∆ ), it can be written as 
ep
i

)Taylor(ep
i

ep
i C

~
CC +=             (26) 

where )Taylor(ep
iC  is denoted the Taylor model tangent operator (obtained by assuming 

0u~ )1n(
S =∇ +µ ) and is given by the volume average of the microscopic constitutive tangent: 
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where Dµ is the microscopic constitutive tangent matrix and Np the number of phases defined 
in the RVE. 

The other part ( ep
iC

~
) of equation (26) represents the influence of the displacement 

fluctuation into the homogenised tangent modulus (see more details in [2, 3]) and can be 
written in the following algebraic form: 

Ti
R
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i
R

ep
i GKG

V
C
~ 11 −
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µ
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where GR and KR are defined according to the multi-scale model and G is defined as 

e

Ne

e
e

e VBDG ∑
=

=
1

µ .             

6 NUMERICAL EXAMPLE 

In the numerical example a narrow plate, see figure (2) subjected to simple bending is 
analysed where is adopted a RVE with a void defined in its central (see figure (3a)). The two 
small sides of the plate are adopted simply supported and the two others, in the span direction, 
assumed to be free. Its geometry is given by: thickness t=10.0cm, width b=50.0cm, length l

=200.0cm and an uniform distributed load g=1kN/cm2 is applied over all plate domain. The 
plate boundary was discretized into 16 quadratic elements, while the domain moments are 
approached over 24 cells, for which the definition of 5 internal points is required as shown in 
Figure (2b). For the RVE, which is adopted square which length side equal to 1cm, 220 
elements and 126 nodes have been used to discretize its domain (see Figure 3a). The material 
properties over the RVE are: Von Mises elasto-plastic criterion with isotropic hardening 
k=2000 kN/cm2, Poisson’s ratio ν=0.3; Young’s modulus E=20000 kN/cm2, yield stress 
σy=40.0kN/cm2.  

It is evaluated how the numerical response changes according to the adopted RVE 
boundary conditions which will be adopted as: (i) linear displacements, (ii) periodic 
displacement fluctuations and (iii) uniform boundary tractions. The results are shown in 
Figure (3b), where can be observed that the limit load obtained considering uniform boundary 
tractions is significantly smaller. The displacements related to the three different boundary 
conditions are very similar for 65.0≤β , when the dissipative processes in the microstructure 
due to presence of the voids and ductile behaviour are not so strong. After that the analysis 
considering uniform tractions along the RVE boundary did not converged, while for the other 
two boundary conditions the analysis continued further. For periodic fluctuations and linear 
displacements the limit load has been achieved, respectively for 7.0=β and 75.0=β .Thus 
the results confirm what had already been verified in other works (see [2, 3]): the linear 
boundary displacement gives the stiffest (most cinematically constrained) solution while the 
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uniform boundary traction model produces the most compliant (least kinematically 
constrained). 
 

      
Figure 2 – Simply supported beam – geometry and discretization 

 
Figure 3: a)Discretization of a RVE with a void defined in the centre b)Deflection at the central point of the 

beam, using different boundary conditions in the RVE 

7 CONCLUSIONS 

A multi-scale modeling for plate bending analysis by coupling BEM and FEM has been 
presented. The macro-continuum has been modelled by a BEM non-linear formulation taking 
into account the consistent tangent operator while a FEM formulation is considered to solve 
the equilibrium problem defined at micro-scale in terms of displacement fluctuation. The Hill-
Mandel Principle of Macro-Homogeneity as well as the volume averaging hypothesis of the 
strain and stress tensors has been used to make the micro-to-macro transition. In the numerical 
example three different boundary conditions for displacement fluctuation have been imposed 
over the RVE: (i) linear displacements (most cinematically constrained), (ii) periodic 
displacement fluctuation and (iii) uniform boundary tractions (least cinematically 
constrained).  
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