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Abstract. A multi-scale modelling for analysing the bendprgblem of plates composed by
heterogeneous materials is presented. The mactoraam is modelled by the non-linear
formulation developed in [1] of the boundary eletneethod (BEM) taking into account the
consistent tangent operator (CTO) and based onhKaff's theory. The micro-scale is
represented by the RVE (representative volume elgrbeing its equilibrium problem solved
by the finite element formulation presented in 3P that takes into account the Hill-Mandel
Principle of Macro-Homogeneity while the volumeeeaging hypothesis of the strain and
stress tensors is used to make the micro-to-maargsition. The microscopic equilibrium
problem consists of, given the history of the macopic strain tensor, finding the field of
displacement fluctuation such that, for each instanthe RVE equilibrium equation is
satisfied. In the numerical example a narrow pktbjected to simple bending is analysed
where is adopted a RVE with a void defined in gatcal and different boundary conditions
are imposed to the RVE.

1 INTRODUCTION

The pre-existence of initial defects in the mate&rianicro-scale as microcracks and
microvoids plays an important role in the stiffne$ghe structure or component. Moreover,
in general, the materials, even the metallic, atrdogeneous at the micro and grain scale.
The concrete, as example, has a very complex ntiaodsre, since it is composed by
different phases (or materials) that have differéoting’s moduli and present different non-
linear behaviour. Besides, often the material nstrecture is appropriately manipulated by
adding certain constituents to a matrix phase,rdemnto change the material properties to
attend specific applications. As any heterogendfityhe material as well as the microcracking
initiation and propagation in the micro-scale afffdzectly the macro-continuum response,
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modelling heterogeneous material in different sc@devery important to better represent the
behaviour of such complex materials [2-5]. In marsjtuations the traditional
phenomenological approach for constitutive desomptdoes not provide a sufficiently
general predictive modelling capability.

At micro-scale, the material behaviour is monitor@udividually to each RVE
(representative volume element) that representsnitoeostructure, at grain level, of the
macro-continuum at the infinitesimal material néighrhood of a point (see [2, 3]). The
strain related to the macro-continuum point is isgebto the cell (RVE) defined at micro-
scale and the micro-to-macro transition is madajyylying a homogenization process, after
solving the equilibrium problem at micro-scale.

The boundary element method (BEM) has already pitwde a suitable numerical tool to
deal with plate bending problems (see [1, 6]). Timethod is particularly recommended to
evaluate internal force concentrations due to ladidgibuted over small regions that very
often appear in practical problems. Moreover, thme order of errors is expected when
computing deflections, slopes, moments and sheaego Therefore, the use of BEM is very
adequate to deal with dissipative phenomena inrbgé@eous materials, such as strain
localization, fracture process and plastic deforomabn macro-scale level.

In the present work, the non-linear BEM formulation plate bending presented in [1] is
used to model the macro-continuum, while to soheeaquilibrium problem at micro-scale a
FEM formulation (see [2, 3] ) has been adopted. Theroscopic equilibrium problem
consists of, given the history of the macroscopiis tensor, finding the field of
displacement fluctuation such that, for each instanthe RVE equilibrium equation is
satisfied. Depending on the boundary conditionspsatb for this displacement fluctuation
field in the RVE, different multi-scale models dam obtained, leading to different numerical
responses. In the present work the following bomnda@nditions will be imposed to the
RVE: (i) linear displacements, (ii) periodic dispdaent fluctuations and (iii) uniform
boundary tractions. In general, the proposed mindels an alternative tool to simulate the
mechanical behaviour of the heterogeneous materidkds ductile and porous ductile
materials. Besides, with the adoption of propediiesive fracture model and plastic criterion,
the proposed modelling will be able to deal witlittler materials, like concrete, in future
works.

2 THE NON-LINEAR PLATE PROBLEM

The non-linear plate bending analysis, that repitssine macro-continuum problem in the
present work, is modelled by a BEM non-linear folation discussed in details in [1] and
based on Kirchhoff's hypothesis. To define the @laénding problem, let us consider a flat
plate of thickness t, external boundargnd domairt2 referred to a Cartesian system of co-
ordinates with xand % axes laying on its middle surface andoeing the axis perpendicular
to that plane. It is assumed that the plate suppmly distributed load acting on the plate
middle plane, in the xxdirection. The variables related to the plate logpghroblem are the
following ones:V, (effective shear force ratem (bending moment rate)w (deflection

rate); W,, (rotation rate), being (n, s) the local co-ordeaystem, witm ands referring to

the boundary normal and tangential directions, @eyely. As the present work deals with
non-linear analysis, all variables are expressedraites, i.e.,(x)=dx/dt, their time



Gabriela R. Fernandes, José Julio C. Pituba andrEdwA. De Souza Neto.

derivatives. The basic equilibrium equations fag fhlate problem will be omitted here, but
they can be found in several works ([31]-[35])
The bending and twisting moment rateg in the plate are obtained by integrating the

Cauchy stresses; across the plate thicknesss follows:

o iz
m;=f 20;dz )

-t/2

Note that in a multi-scale analysi; is obtained after solving the RVE equilibrium
problem.As this work only deals with small strain problertige total strain will be split into
its elastic and inelastic par&ﬁe, and E,Jp respectively, as follows:

& =& +&f (2)

By assuming the Kirchhoff’'s hypothesis, the tothia component for the bending
problem is given byg; =—x,W,; , being w,; the plate surface curvature. The moment rate

i)
predictor m‘f often defined as elastic trial used in non-linakyorithms, can be written in
terms of the total curvatures, as follows:

iE = ~D[Wig & +{1-v)y | 3)

where g, is the Kronecker delt:D = Et®/ 12(1—V2) is the plate flexural rigidity and is the

Poisson’s ratio.
Thus, the inelastic moment ralt'n;jp is defined as:

m”p = mIT - m” (4)

3 BEM ALGEBRAIC EQUATIONS

Let us considedt =t,,, —t,, a typical time step in the non-linear solutioheTinite step
boundary value problem consists of searching th&ieo at the time step enf},, when this

solution is known at the time step beginnit)g From Betti's reciprocal theorem (see more

details in [36]) we can obtain the following repeatation of deflections written for internal
and boundary collocation points which is an exatedral representation:

K(q)A/\(q)=—J.(V W-M —jd/’ %“R; +ZRCJ i j(v w’-M %D}jr

+ J.Agvv* de - I W, Amf d (5)
2, Q
wherew*, V¥ and M* are plate bending fundamental values of deflectiefifective shear

forces and boundary momenhté are numbers of corners afyj is the plate loaded area,; for
the free term K(q) values see [1].
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The integral representation for the curvature imaetdw,; can be obtained by

differentiating equation (5) twice at an internallgcation point see more details in [1].
To obtain the algebraic equations linear elementd \wuadratic shape functions are

adopted to approximate the four values definedalbe plate boundaryAw, 4Aw,,, AM
and 4V, As two of these values are prescribed only twaagqos are required per node. One

deflection equation is written for a collocationiqtodefined along the boundary and another
one is written for an external collocation very ndgee boundary. Besides, at boundary corners
we may write extra equations as the reactions rgepved as unknowns.

The inelastic moment incrementAr(y; ) will be approximated over the domain by using
triangular cells where continuous or discontinutiisar shape functions are considered. For

the cells sides defined on the external boundae/nbdes and collocations are placed inside
the cells because of the discontinuity. To perfdh® non-linear analysis of plate bending,
three equations of elastic trial moment incremeki;, at each node are required to evaluate
the stress field over domain. These equationslateered from the curvatures by applying the
Hooke's law (equation (3)). After selecting conesmtily the collocation points and
performing the relevant integrals over boundarynelets and over cells, one obtains a set of
algebraic equations given in terms of boundary esland inelastic moment increments,
which after applying the boundary conditions camiigten as (see more details in [1]):

X = AL+ R, Am” (6)

where the vectordX contains the plate bending unknowns on the boyralad cornersAL
represents the elastic parts of these unknovifs, expresses the corrections due to the

inelastic moment increment.
We can also derive the following BEM algebraic gégqurafor the actual moment increment
AM (for more details see [1]):

M =Cyy Ay — Ky, — Sy [4mP )+ 4m )

where Ay is the curvature increment in the plag, a matrix that contains the elastic
constant matrices (obtained from equation 3) onalles defined in the plate; the inelastic
moment increment vectakm® is given byAm® =C,,Axy —Am. ZK,, is the elastic solution

given in terms of moment increments,, gives the bending moment effects due to the nodal

inelastic incrementsAm® .

Observe thatAm®,Am® and Am defined, respectively in equations (4), (3) anjl fe
computed locally for a particular point, i.e., thage obtained taking into account only the
actual curvature incrememtw,, and the actual stress tensor incremapt, related to that

point. To obtain the non-linear solution for an rement n, the following equilibrium
equation has to be satisfied:

K, -, =0 8)
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Replacing equation (7) into (8), one obtains thwlfialgebraic relation to impose the
equilibrium conditions over the time incremehy:

RM(AXn):ZAKMn_CMAXn+SM(CMAXn_Amn)_Amn=O ©)

After applying to the plate a curvature increméyf, and obtaining the stresd\g; )

distribution over the plate thickness for all nodeopted in the domain discretization, if
equation (9) is not satisfied, a residual momegtm@n null will be computed, i.e., the
increment is not elastic. Then, equation (9) wél $olved by applying Newton-Raphson’s
scheme, for which an iterative process may be redquio achieve the macro-continuum
equilibrium. Let us consider the iteratiowhere the curvature increment is known. The next
trial increment, ati¢ 1), is obtained by finding the additive correctiofigy,** :

i+1

At = Axh+ aaxt (10)

The correctionsddy!** are computed after the linearization of equat®)rd give:

i -1
d_d)(rl:l:_%()%)} Ru(axt) 11§

0R, (ax.)

where Talar) =S, (Cfﬂ"n(‘) -C, )+ Cy +C7¥ is the Consistent Tangent Operator (CTO)

obtained by differentiating equation (Qﬁn(i)is a matrix that contains inelastic tangent

modulus C,?f]ik (relating moments and curvatures) of all cell nodes
Observe that the actual values of the internale®incremeniam, defined in equation (1)

as well as the tens C;'f]ik are computed numerically adopting a Gauss schemnaytich a
number of Gauss points has to be defined alongldte thickness.

4 EQUILIBRIUM PROBLEM DEFINED AT MICRO-SCALE

Let us initially consider the macro-continuum degecin Figure (1), which in this work is
represented by the plate, of characteristic lengthingx an arbitrary material point of this
continuum and y an arbitrary point of the microscogell, called RVE (Representative
Volume Element) (see [2, 3]). For the RVE, the wotuis denoted by,, the domain by,
the boundary byQ , and the characteristic length Qyln order to perform the multi-scale

analysis, one RVE must be associated with eacht poaf the macro-continuum where the
stress vector computation is required. As in thesent work, for a particular cell node of the
macro-continuum, the stregs has to be computed for a number of Gauss poiiitsedeover
the plate cross-section one RVE has to be assdomdth each Gauss point defined over the
plate thickness.

It is assumed that the strain tensst) as well as the stress tengxfk,t) at a pointx of the
macro-continuum is the volume average of their @epe microscopic fieldef=¢,(y,t) or
o,~ gy,t)) over the RVE associated withThat is, at an arbitrary instant t:
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1
g(xt)=— | &,(y.t)av (12)
Vv, é[ #
a(x,t):vi jaﬂ(y,t)dv (13)
o)

macroscopic
continumm
(macro-scale)

representative
volume element
(micro-scale)

Q= QU

1

Figure 1 — Macro-continuum with a locally attached microdsture

Note that in equations (12) and (13), a microscaopiantity (¢, or o,) over the RVE is

mapped into a macroscopic quantity ¢r o ) by means of a homogenization technique using
the volume average, where the tensarsand ¢ are referred to as the macroscopic or
homogenised strain and stress, respectively. B&side microscopic stress can be written in
terms of the microscopic strain as followsg,(yt))= f,(gAy.t)), beingf, the constitutive
functional, which in this work can be defined by t¥ion Mises elasto-plastic criterion or by

Hooke’s law if an elastic behaviour is adopted. &tiver, the microscopic straig), can be
written in terms of the microscopic displacemeneldi u,of the RVE as follows:

— M5 s . .
gu(y,t) =0 uﬂ(y,t), where[l® denotes the symmetric gradient.

By the homogenization process we can also obtarhtmogenised constitutive tangent
modulusC® , as follows

Vi [0, (y.t)av Vi jdy(fy(y't))dv
) dO’(X,t) B H 25 _ H 2, (14)

Co )= Je(x.t) Je(x,t) Je(x,t)

Observe that after solving the RVE equilibrium peob, the microscopic fields of strain
£, and stresgg, are known and then the micro-to-macro transitian be made by using

equations (13) and (14). Besides, any microscojsiglatement fieldu,, may be split into
the following sum:
u(y.t)=elxt)y+,(yt) (15)
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In equation (15) the portiosy varies linearly in y, and it is obtained by mulipg the

macroscopic strairg imposed to the RVE, which is constant, by the domtes of point y.
The portiona, is denoted displacement fluctuation and represtetstrain variation in the

RVE, i.e., in the case of having uniform microseopirains,, the displacement fluctuation
a, is null. Accordingly, the microscopic strain figklgiven by:

g,(yt)=e(xt)+&,(y.) (16)

where £ is constant and represents the homogeneous stnpiosed to the RVE by the
macro-continuum an&,,(y,t) = DSU/, IS the strains fluctuation field.

The necessary condition for a displacement fluanafield U,to be kinematically

admissible is thaii, [ R;, being IZ; the minimally constrained vector space of kineosly
admissible displacement fluctuation of the RVE wledi as:

K:,E v, sufficiently regular/ IVDS ndA=0 a7
20,

wheren denotes the outward unit normal field dﬁﬂ .

From the Principle of Virtual Work and consideritigg Hill-Mandel Principle of Macro-
Homogeneity (see [2, 3]), which establishes thatrttacroscopic stress power must equal the
volume average of the microscopic stress power theeRVE, we can obtain the following
form of the equilibrium equation written in termisdisplacement fluctuations:

J.fy(f(x,t)+ Dsﬁﬂ(y,t)): O%dv =0 Opd 7, (18)
2

where74, is a space of virtual displacements that satisfies K;.

Finally, the formulation is completed with the ot®iof an appropriate spa@g, i.e., with

the choice of kinematical constraints to be imposedhe RVE. Therefore, the microscopic
equilibrium problem consists of, given the histofythe macroscopic strain tensgrfinding

the field Gﬂ 0O 74 such that, for each instant t, the equilibrium ¢iquma(18) is satisfied. In
view of the arbitrariness af, after discretising the RVE domain into elemetits, following

incremental microscopic equilibrium equation mustidnfor a load increment of time
A, =t —t, and discretisatiorh, that allows one to find the fluctuation displaesm

iy = Yy F Ay

G = jBT £, (s + B sy IV =0 (19)
2

whereB is the global strain-displacement matrbgﬁ denotes the discretised RVE domain.
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If the load incremenh is non-linear, equation (19) is solved by applythg Newton-
Raphson Method which consists of finding the flatitons correctionsﬁl’]}l+1 for iterationi+ 1,
such that:

Fl+K'd,"=0 (20)
whereF is the tractions vector ari{lthe tangent stiffness matrix of the RVE; denofihdhe

element strain-displacement matr¥, the number of finite elements arﬁhﬁ the constitutive
tangent modulus of the elememtF and K are defined as:

Ne '
Fl= IBT £ g+ BUL)1V=ZBgaf,(')\/e (21)
QE e=1
. . Ne .
K= IBTD;,de => BIDSBY, . (22)
Q/T e=1
. df . . L

beingD,, = d_y the consistent constitutive tangent matrix fieldelothe RVE

£ .

Hlg, =™ +BT,"

domain.

After computing the correctiomﬁ;fl from equation (20), the next trial displacement
fluctuation field to be considered in iterationl related to the micro-continuum is given by:
il i i+1
u,~=u,+a,".

The homogenised stress is computed by equationwhih after discretizing the RVE
domain into elements, for a given increment of tidie=t_,, —t, used to model the loading

incremental process, it can be written in the felltg incremental form:

1
O =] e Ds A= [, O yav (23)
#1o0h 25m
H H

where denoting u and v as arbitrary vectors, the following definition
uDSv:%(uDv+vD u) is used to compute the integrals defined in (23); is the

tractions across the RVE external boundary (egnaib) andy represents the coordinates
vector of a point in the RVE.

The RVE formulation described so far is completéithwhe choice of an appropriate space
74, i.e., with the choice of kinematical constraitdsbe imposed on the RVE what leads to

the following three different classes of multi-scatodels:

(i) Linear boundary displacements
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In this model the displacement fluctuatioms are assumed null along the external
boundaryo, , i.e., the displacements are lineatleboundaryQ
uﬂ(y,t):s(x,t)y Oydoe, (24)

and the spac#, is chosen a3+, = {ﬁ,, 0K}, /T,(yt)=0 Dde.QH}

(i) Periodic boundary fluctuations

This model is usually adopted to represent a medlaperiodic microstructure. In fact, it
can be shown that any material behaviour presemsriadic response if fine meshes are
considered. In order to define its fluctuation thspments field, consider a square or a
hexagonal RVE. For each side* , whose normal direction is*, corresponds to a equally

sized ;- with normal directionn;”, beingn’ = -n. Similarly, for each pointy” defined over
r,* there is a pointy over the side,”. In this case, it is assumed that the displacement
fluctuation must be periodic on the boundary of R¥E, i.e., for each pair ", y } of
points we must have:
g,y )=,y 1) 0 {y*.yjoee, (25)
Besides, in the corners the displacement fluctonatare assumed nulls. Therefore, in this
modelthe spacé/, is adopted asi*, :{Gﬂ O R},/U/,(f ,t):G/,(y‘ ,t) 0 {y*,y'}D@Qﬂ}.

(i) Uniform boundary traction

This model is also denoted as the minimally commstchmodel, as the spa@e, is adopted
coincident to the spacié; (the minimally constrained vector space of kineoasdity

admissible displacement fluctuation of the RVE)imed in equation (17), .6/, =K;.

Considering that the tractiotfsover 92, can be written as$® = Jﬂ(y,t)n , beingn the normal
direction to the boundary, in order to satisfy thé-Mandel Principle as well as equation
(17) where the spacK; is defined, we conclude that the distribution wéss on the RVE

boundary must be constant, iceﬂ(y,t) = Uy(t), OyODof, .

Let us now to define the macroscopic or homogendsmettitutive tangent moduluG™®
which is computed by equation (14). After the RVIScdetisation into elements, for an
iterationi of the incremennh of time used to model the loading incremental pssc(being

4, =t ., —t,), it can be written as
Ciep =Ciep(Taylor)_’_(':”iep (26)
where c®™) is denoted the Taylor model tangent operator (obth by assuming

DSUH(M) =0) and is given by the volume average of the miap&cconstitutive tangent:
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1
v, _[afy(g”ﬂ)dv ( ) N
Con(Taylor) H o) i 1 Oy \Ensg av -1 _[D/ide = Zpﬁ Dﬁ(i) (27)
ag V,U _QB afy i V,U _Q’lh, p:]_V”

whereD, is the microscopic constitutive tangent matrix &dthe number of phases defined
in the RVE.

The other part ((Siep) of equation (26) represents the influence of theplacement

fluctuation into the homogenised tangent modulee (s10re details in [2, 3]) and can be
written in the following algebraic form:

~ 1 -1 T
GF == CrKr Gr (28)
7

where Gg and Kz are defined according to the multi-scale model &ds defined as

Ne
G=) DiBY..

e=1

6 NUMERICAL EXAMPLE

In the numerical example a narrow plate, see fig@jesubjected to simple bending is
analysed where is adopted a RVE with a void defindts central (see figure (3a)). The two
small sides of the plate are adopted simply suppaahd the two others, in the span direction,
assumed to be free. Its geometry is given by: tlesk t=10.0cm, width b=50.0cm, length
=200.0cm and an uniform distributed load g=1kN/dmapplied over all plate domain. The
plate boundary was discretized into 16 quadragmehts, while the domain moments are
approached over 24 cells, for which the definitodrd internal points is required as shown in
Figure (2b). For the RVE, which is adopted squaleclv length side equal to 1cm, 220
elements and 126 nodes have been used to disdtstti@main (see Figure 3a). The material
properties over the RVE are: Von Mises elasto-astiterion with isotropic hardening
k=2000 kN/cni, Poisson’s ratiov=0.3; Young’s modulus E=20000 kN/émyield stress
0y=40.0kN/cnA.

It is evaluated how the numerical response charagesrding to the adopted RVE
boundary conditions which will be adopted as: (De&r displacements, (ii) periodic
displacement fluctuations and (iii) uniform boungddractions. The results are shown in
Figure (3b), where can be observed that the lioaitllobtained considering uniform boundary
tractions is significantly smaller. The displacetserelated to the three different boundary
conditions are very similar fg¢# < 065, when the dissipative processes in the microstract
due to presence of the voids and ductile behavaoeimot so strong. After that the analysis
considering uniform tractions along the RVE bound#id not converged, while for the other
two boundary conditions the analysis continuedhiert For periodic fluctuations and linear
displacements the limit load has been achievegentsely for g = 0.7and B = 0.75.Thus
the results confirm what had already been verifiredther works (see [2, 3]): the linear
boundary displacement gives the stiffest (mostrtecally constrained) solution while the

10
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uniform boundary traction model produces the mostmmiant (least kinematically
constrained).

B > [
31 29 27 25 23 21 19
b 32 it
3%, R 34 3738 39 ~4C <41< 6
b 36 14

X 1 3 : ! <
1 3 5 7 9 11 1%
0 L
/‘
Figure 2 — Simply supported beam — geometry and discrétizat
1
.
(looad factor) 0.8 linear
K displacement
3 | — :
04 ’/:‘/A =4 periodic
4
0'2 ........
’ uniform
0 & tractions
0 2 4 6
w (cm)

Figure 3: a)Discretization of a RVE with a void definedthe centre b)Deflection at the central point of the

beam, using different boundary conditions in theERV

7 CONCLUSIONS

A multi-scale modeling for plate bending analysysdoupling BEM and FEM has been
presented. The macro-continuum has been modelledBEM non-linear formulation taking
into account the consistent tangent operator wailEM formulation is considered to solve
the equilibrium problem defined at micro-scaleemts of displacement fluctuation. The Hill-
Mandel Principle of Macro-Homogeneity as well as ttolume averaging hypothesis of the
strain and stress tensors has been used to makediweto-macro transition. In the numerical
example three different boundary conditions foptiisement fluctuation have been imposed
over the RVE: (i) linear displacements (most cingoa#ly constrained), (ii) periodic
displacement fluctuation and (iii) uniform boundaryactions (least cinematically
constrained).
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