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Abstract. A transient coupled thermoelastic analysis of two-dimensional, isotropic and linear 
elastic functionally graded materials under impact loading is investigated. For this purpose, a 
boundary element method is developed. Fundamental solutions of linear coupled 
thermoelasticity in Laplace-transformed domain for isotropic, homogeneous, and linear elastic 
solids are used for the boundary-domain integral equation formulation. The radial integration 
method is applied for the evaluation of the arising domain integrals. Numerical results for the 
dynamic stress intensity factors are presented and discussed. 

 
 
1 INTRODUCTION 

In recent years, functionally graded materials (FGMs) received considerable research 
interests in materials and engineering sciences. FGMs represent a new class of high-
performance composite materials formed by continuously variable composition of the 
constituents over volume [1]. In comparison to the conventional composite materials, FGMs 
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possess many superior mechanical, thermal, corrosion-resistant and wear-resistant properties. 
FGMs can be widely applied in engineering structures and components such as electronic 
devices, blast protection, corrosion resistant coatings, wear-resistant coatings, thermal barrier 
coatings and biomaterials. As a representative example of FGMs, the ceramic/metal FGMs 
are compositionally graded from a ceramic phase to a metal phase. Ceramic/metal FGMs 
possess the desirable properties of metals such as high toughness, large mechanical strength 
and excellent bonding capability and high heat, wear and corrosion resistances of ceramics. 
An important application area of FGMs is their utilization in innovative engineering structures 
and structural elements under severe mechanical and thermal impact loading conditions. 
Because of the inherent brittle nature of ceramics, cracks or crack-like defects may develop in 
the manufacturing phase or during their services. Therefore, the fracture and damage analyses 
of FGMs under extreme mechanical and thermal impact loadings are of particular importance 
to their thermal and mechanical integrity, functionality, reliability and durability in 
engineering applications. Such analyses may provide a fundamental understanding of the 
failure mechanisms of FGMs that is helpful in the design, optimization and innovative 
applications of FGMs. 

The initial-boundary value problems of transient linear coupled thermoelasticity are 
described by a system of coupled partial differential equations with variable coefficients 
supplemented by prescribed initial and boundary conditions. Due to the high mathematical 
complexity of the corresponding dynamic thermoelastic problems for non-homogeneous 
FGMs, analytical methods can be obtained only for very simple geometry and loading 
conditions. In general cases, numerical and experimental methods have to be applied to 
fracture and fatigue analyses in FGMs subjected to thermal and mechanical impact loadings. 

In this paper, the two-dimensional (2-D) transient linear coupled thermoelastic crack 
problem in continuously non-homogeneous, isotropic and linear elastic FGMs under 
mechanical impact loading is investigated. The material properties of the FGMs are assumed 
to be continuous functions of the spatial coordinates, while Poisson’s ratio is taken as 
constant. A boundary element method (BEM) is developed to analyze the responses of the 
crack with traction-free crack-faces. The transient linear coupled thermoelasticity is governed 
by the equations of motion and the thermal balance equation. The Laplace-transform 
technique is applied to eliminate the time-dependence in the governing equations. A 
boundary-domain integral representation is derived from the generalized Betti’s reciprocal 
theorem by using the fundamental solutions for a homogeneous, isotropic and linear 
thermoelastic solid [2]. The boundary-domain integral equations (BDIEs) are obtained for 
mechanical and thermal field quantities [3-5]. Due to the material non-homogeneity, this 
approach leads to domain integrals involving the unknown quantities in addition to the 
conventional boundary integrals. The domain integrals are transformed into boundary 
integrals by using the radial integration method (RIM) [6,7]. A collocation method is 
implemented for the spatial discretization of the boundary-domain integral equations. After 
the boundary-domain integral equations have been solved numerically in the Laplace-
transformed domain, the final time-dependent solutions are obtained by applying the inverse 
algorithm of Stehfest [8]. A displacement extrapolation technique is used to compute the 
dynamic stress intensity factors. Numerical examples for the dynamic stress intensity factors 
are presented and discussed to demonstrate the accuracy and the efficiency of the present 
BEM. The influences of the material gradation and the mechanical impact loading on the 
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dynamic stress intensity factors (SIFs) are investigated in details. 

2 BOUNDARY-DOMAIN INTEGRAL EQUATIONS 
Let us consider a continuously non-homogeneous, isotropic and linear elastic FGM in a 2-

D domain. The material parameters such as the mass density ( )x , the Young’s modulus 
( )E x , the thermal conductivity ( )k x , the specific heat ( )c x , the linear expansion coefficient 
( )α x , etc. are assumed to depend continuously on the Cartesian coordinates, while the 

Poisson’s ratio ν  is a constant. In this case, the elasticity tensor is expressed as  

 0( ) ( )ijk ll ijkc c= µx x  (1) 

with  

 ( ) ( )
( )

0 and ,
1 2 2 1ij klij ki lj kj lkl i

E
c δ δ δ δ
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δ
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+ δ
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x  

where ( )µ x  is the shear modulus, ijδ  denotes the Kronecker symbol. In the absence of body 
forces and heat sources, the equations of motion and the generalized heat-conduction equation 
in transient coupled thermoelasticity are given by  
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where ijσ  is the stress tensor, ( )k x  is the thermal conductivity, 0 /T kη = γ  and 0T  is the 
reference temperature. Unless otherwise stated, the conventional summation rule over double 
indices is implied, a comma after a quantity indicates spatial derivatives, a dot over a quantity 
denotes time derivative, and Latin indices take the values of 1 and 2. A measure of the 
thermo-mechanical coupling due to the dilatational term ,k kuη   in Eq. (2) is defined by a 
dimensionless coupling parameter [2, 9] 

 
2
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that equals zero for an uncoupled problem. Applying the Laplace-transform to the governing 
equations (2) and using the Duhamel-Neumann relations [2] yields 
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where γ  and κ  are the stress-temperature modulus and the thermal diffusivity, p  denotes the 
complex Laplace-transform parameter and the superimposed bar denotes the Laplace-
transformed quantities. 
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Integral representations of the displacements and the temperature at an arbitrary point are 
derived from the generalized Betti’s reciprocal theorem for FGMs by using the fundamental 
solutions of the Laplace-transformed linear coupled thermoelasticity for homogeneous 
materials [2]. By moving the observation point to the boundary ∈Γx  or keeping it in the 
domain ∈Ωx  the following system of BDIEs for the mechanical and thermal fields at the 
boundary and interior points is obtained as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )0

1, , , , , , ,
( )

( ), , , , , , , 0,
( )
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where x  and y  represent the source and the observation points, ( , , )ijU px y , ( , , )iU px y , 

( , , )T px y , ( , , )ijT px y , ( , , )iT px y , ( , , )iZ px y  and ( , , )F px y  are the fundamental solutions 
[2,4,5]; ( , ) ( , ) ( )i ij jt p p n= σx x x  are the components of the traction vector, 

,( , ) ( , ) (( )) i iq k np p= θxx x x  is the heat flux and in  denotes the components of the outward 
unit normal vector. Here, a tilde denotes the ratio of the non-homogeneous quantity to the 
homogeneous quantity that is designated by a zero subscript. The functions ( )u

jF and ( )F θ  
describe the material non-homogeneity, which completely vanish for a homogeneous solid, 
and are defined [4,5] as 
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The BDIEs (5) and (6) contain boundary and domain integrals with singular kernels. The 
strongly singular integrals are interpreted in the sense of the Cauchy principal value. Making 
use of the singularity subtraction technique and the variable transformation technique the 
strong and weak singularities in Eqs. (5) and (6) can be removed [10,4,5]. 

3 NUMERICAL SOLUTION PROCEDURE 

In order to avoid the domain discretization into internal cells for evaluating the domain 
integrals in Eqs. (7) and (8) the radial integration method (RIM) developed by Gao is applied 
[6, 7]. The functions (7) and (8) can be rewritten in matrix form [5] as  

 ( , ) ( , , ) ( , ) ( , , ) ( , ) ,p p p d p p d
Γ Ω

= Γ + Ω∫ ∫F x F x y u y G x y u y  (9) 

where F  is the vector of functions ( )u
iF  and ( )F θ , u  is the vector containing the 

displacements iu  and the temperature θ , and the 3 3×  matrices F  and G  are given in [5]. 
The unknown fields iu  or θ  are approximated by a series of prescribed radial basis functions 
and the linear polynomials  

 

0

1 1
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A A j
i i i j i

A

A A A
i i j

A A

u p p R a p x a p

p p x
= =

= α φ + +

α = α =

∑

∑ ∑

x
 (10) 

where || ||AR = −x x  is the distance from the application point A  to the field point x , A
iα  and 

j
ia  are the unknown expansion coefficients to be determined and A

jx  denotes the coordinates 
at the application point A , which consist of all boundary nodes and some selected internal 
nodes. The fourth order spline-type radial basis function [6, 7] is used  

 2 3 4( ) 1 6 8 3 .A R R R Rφ = − + −  (11) 
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The unknown coefficients A
iα  and j

ia  can be determined by applying the application point 
 in Eq. (11) to every node. Then, a system of linear algebraic equations can be obtained in 

matrix form as 

 { } [ ]{ },u = Φ α  (12) 

where { }α  is the vector consisting of the coefficients A
iα  for all points and j

ia . If two 
application points do not coincide, the matrix [ ]Φ  is invertible and thereby 

 { } [ ] { }1 .u−α = Φ  (13) 

Substitution of Eqs. (10) into the domain integrals of Eq. (9) yields  

 0 .a a k
ij j j ij j ij k j ijG u d G d a G y d a G d

Ω Ω Ω Ω

Ω = α φ Ω+ Ω+ Ω∫ ∫ ∫ ∫  (14) 

Applying the RIM [5-7] to the domain integrals in Eq. (14) results in 

 , 1 0 01 1(  )ka a k k
ij j j ij j ij j k j ij

rr r rG u d F d a F d a x a F d
r n r n r nΩ Γ Γ Γ

∂ ∂ ∂
Ω = α Γ + Γ + + Γ

∂ ∂ ∂∫ ∫ ∫ ∫  (15) 

with the radial integrals 

 1 2 0

0 0 0

, .  ,
r r r

a a
ij ij ij ij ij ijF rG dr F r G dr F rG dr= φ = =∫ ∫ ∫  (16) 

It is important to note here that the term ,ir  appearing in the radial integrals is constant [7] and 
the relation ,k k ky x r r= +  is used for the transformation from y  to r . The radial integrals (16) 
are regular and can be evaluated numerically by using standard Gaussian quadrature for every 
field point. 

The BDIEs (5) and (6) can be solved numerically by applying a collocation method. The 
usual discretization procedure applied in BEM is utilized for the boundary discretization of 
the BDIEs in the Laplace-transformed domain [2, 10]. After numerical integrations and 
imposing the prescribed boundary conditions the system of 3N  linear algebraic equations can 
be written as  

 
, for boundary nodes,
, for internal nodes,

b b b b

i b i i i

= +
+ = +

A x y D u
A x u y D u

 (17) 

where w dN N N= +  is the total number of the unknown quantities, wN  and dN  correspond to 
the number of the boundary nodes and the number of the internal nodes, respectively, the 
superscripts b  and i  denote the quantities at a boundary point and an interior point, 
respectively. In Eqs. (17), bx  is the 3 wN  vector of the unknown values of the displacements 

,iu  the tractions it , the temperature θ  and the heat flux q  at the boundary collocation points, 
iu  is the 3 dN  vector of the unknown displacements iu  and the temperature θ  at the interior 

A
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collocation points, u  is the 3N  vector composed of vectors bx  and iu , by  and iy  denote the 
3 wN  and 3 dN  vectors of the prescribed boundary quantities. The sizes of the matrices bA , 

,iA bD  and iD  are 3 3w wN N× , 3 3d wN N× , 3 3wN N×  and 3 3dN N× , respectively. It should 
be noted that the matrices bD  and iD  stem from the evaluation of the domain integrals ( )u

jF  
and ( )F θ . The system of linear algebraic equations (17) is solved numerically to obtain the 
boundary unknowns bx  and the primary interior field quantities iu  for discrete values of the 
Laplace-transform parameter p . The final time-dependent solutions are found by the 
numerical inversion of the Laplace transform using the Stehfest’s algorithm [8]. 

Different methods can be used for the evaluation of the SIFs. In this analysis, the 
extrapolation technique following directly from the asymptotic expansion of the 
displacements in the vicinity of the crack-tip is employed [10,11]. For a crack located on the 

1x -axis, the dynamic mode-I and mode-II SIFs are related to the crack-opening-displacements 
( , )iu t∆ x  by 

 
( )
( )

( )
( )

I 2tip

II 1

,2 1lim ,
,1 a

K t u t
K t u taε→

   ∆ επ   = µ   ∆ εκ + − ε      
 (18) 

where 03 4κ = − ν  or 0 0(3 ) / (1 )κ = −ν + ν  for plane-strain or plane-stress conditions, 
respectively, tipµ  is the shear modulus at the crack-tip, and ε  is a small distance from the 
crack-tip to the considered node on the crack-faces. 

4 NUMERICAL RESULTS 

As a numerical example we consider an edge crack in a rectangular, isotropic and linear 
thermoelastic FG/homogeneous bimaterial plate, which is subjected to impact loading 

0( , ) ( )t H tσ = σx  as shown in Fig. 1a. Here, 0σ  is the constant loading amplitude and ( )H t  is 
the Heaviside step function. The geometry of the cracked plate is determined by the width 

1,w =  
height 2 3h w=  and crack-length 0.4a w= . An exponential material gradation with the 
gradient parameter gα  in the 2x -direction perpendicular to the crack-line of the FG coated 
structure is assumed as [5] 

 0 2 0 2 0 2exp( ), exp( ), exp( ).g g gE E x k k x c c x= α = α = α  (19) 

The mass density, the Poisson’s ratio and the linear thermal expansion coefficient are taken as 
( ) 1=x , ( ) 0.02α =x  and 0.25ν = , respectively. Plane-strain condition is assumed in the 

numerical calculations. The sub-domain technique is adopted in crack analysis [11]. The plate 
is virtually divided into two sub-domains along the crack-line, and the fictious boundary is 
shown on Fig. 1b as dot-dashed line. The non-homogeneity of the FG layer induces a mixed 
mode crack-tip loading even though the cracked plate is subjected to a pure tensile loading on 
the top and the bottom side symmetric to the crack-faces, i.e., the mode-II dynamic SIF is also 
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present along with the mode-I dynamic SIF. For convenience, the dynamic SIFs are 
normalized as *

, ,( ) ( ) /I II I IIK t K t K=  with 0
*K a= σ π . 

 
Figure 1: An edge crack in a FG/homogeneous bimaterial plate 

To test the accuracy of the proposed BEM, a homogeneous cracked plate with 0gα =  is 
first considered. The normalized mode-I SIF IK  is given in Fig. 2. The BEM result is 
compared to the corresponding results by Sladek et al. [11] provided by the MLPG and FEM. 
A very good agreement between the results is obtained, especially an excellent agreement can 
be observed in the time interval 6t ≤ .  

 
Figure 2: Normalized dynamic mode-I SIF for the homogeneous cracked plate 
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Figure 3: Normalized dynamic a) mode-I and b) mode-II SIFs for ln(2), ln(3), ln(5)g hα =  

 
Figure 4: Normalized dynamic a) mode-I and b) mode-II SIFs for ln(0.5), ln(0.333), ln(0.2)g hα =  

To investigate the influences of the material non-homogeneity on the SIFs six material 
gradient parameters are selected as ln(2),  ln(3),  ln(5)ghα =  and 

ln(0.5),  ln(0.333),  ln(0.2)ghα =  in the numerical analysis. The time variations of the 
normalized mode-I and mode-II SIFs for the selected gradient parameters are shown in Figs. 3 
and 4. The positive gradient parameters (Fig. 3) result in a reduction of the peak dynamic SIFs 
in comparison to that for negative gradient parameters (Fig. 4). The wave velocity in this case 
is also increasing. Hence, the peak values of the dynamic SIFs are reached at smaller time 
instants. The opposite tendency is observed in Fig. 4 with the decreasing gradient parameters. 
Thus, the present results show that the gradient parameters have significant influences on the 
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dynamic SIFs. 

 
Figure 5: Normalized dynamic a) mode-I and b) mode-II SIFs for 0, 0.3δ =  and ln(2)g hα =  

 
Figure 6: Normalized dynamic a) mode-I and b) mode-II SIFs for 0, 0.3δ =  and ln(0.5)g hα =  

The effects of the thermo-mechanical coupling on the normalized dynamic mode-I and 
mode-II SIFs can be observed in Figs. 5 and 6. In this case, the thermo-mechanical coupling 
parameter (3) is taken as 0.3δ = , which correspond to the previously used material 
parameters with the reference temperature 0 225T = . With the increase of the coupling 
parameter, the peak values of the normalized dynamic SIFs are reduced. The numerical results 
imply that the influence of the thermo-mechanical coupling on the dynamic SIFs is much 
weaker in comparison to the influences of the material gradation. 
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5 SUMMARY 
A 2-D transient thermoelastic crack analysis in isotropic, non-homogeneous and linear 

elastic FGMs subjected to impact loading is presented in this paper. For this purpose, a BEM 
is proposed. Fundamental solutions of linear coupled thermoelasticity for the corresponding 
homogeneous, isotropic and linear elastic materials in the Laplace-transformed domain are 
employed to derive the boundary-domain integral equation formulations. The material non-
homogeneity is described by domain integrals, which are evaluated by using the RIM. A 
collocation-based BEM is developed in the Laplace-transformed domain. The numerical 
inversion of the Laplace-transform is performed by using the Stehfest’s algorithm. The 
temporal variations of the dynamic SIFs for an edge crack in 2-D FGM plate are presented. 
Numerical results demonstrate that the material gradation have significant influences on the 
dynamic SIFs, namely their peak values and the corresponding time instants, at which they 
appear. On the contrary, influences of the thermo-mechanical coupling on the dynamic SIFs 
are much weaker in comparison to the influences of the material gradation. 
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