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Abstract. This paper introduces a conservative computational multi-fluid porous media
flows model able to exploit the latest mesh adaptivity methods on fully-unstructured
tetrahedral grids. The model is based upon two key numerical characteristics: (a) novel
family of PnDG-Pn+1 finite element pairs [1] and (b) a consistent overlapping control
volume finite element method (CVFEM) formulation. In particular, the P1DG-P2 element
(i.e., discontinuous and piecewise linear representation for velocity whilst continuous and
piecewise quadratic shape functions are used to represent the pressure field) is introduced
as the basis of the discretisation and also as the CVFEM counterpart. The formulation
is applied to an unsaturated/saturated porous media system.

1 INTRODUCTION

Current generation of fluid flow models for porous media flows are very sophisticated,
however they are often based on outdated computational methods (e.g. structured or
block structured hexahedral FEM- and FDM-based discretisation). Since these methods
are often at the heart of transport in porous media, it is vital that these methods are
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updated in light of recent advances in computational methods and able to exploit the
current state-of-the-art mesh-adaptive methods. The latter moves the mesh to follow flow
features or interface, and adapts the structure of the mesh to produce optimal anisotropic
resolution [11]. The computational effort is thus placed exactly where it is needed.

It is rather important to apply these new concepts in terms of research, as well as in
industry. In oil exploration, typical recovery factors after primary and secondary oil re-
covery operations are between 35% and 45% [14] – this means that at least half of the oil
content can not be effectively recovered. One way of optimising these operations is by im-
proving our understanding of geophysical properties of hydrocarbon’s reservoirs, but also
developing more accurate models that help predicting multi-fluid flow in heterogeneous
reservoirs.

In soil contamination problems, health risks associated with direct contact with the
contaminant and/or its vapours have been investigated. In addition, these contaminants
might affect groundwater aquifers and other sources of water supplies. This problem
can be mitigated by excavating, containing and aerating the contaminated cross-section
of soil, within other methods [15]. One way of improving environmental remediation is
by using field measurements along with numerical simulation, hence the need for more
sophisticated and reliable computational approaches [7]. Many phenomena arise from
multi-fluid flow in porous media, one of which is known as viscous fingering, i.e., onset and
propagation of instabilities in porous media flow caused by differences in viscosity, density
and porous media morphological properties. Viscous fingering allows a wide spectrum of
length scales to occur in the flow, which is rather important for applications in secondary
and tertiary oil recovery [8]. It is widely reckoned that an approximated solution to
the Richards equation in regions with steep gradients in saturation, as in wetting fronts,
might yield inaccurate results [13]. Therefore, developing and optimising mesh-adaptivity
algorithms are essential steps towards better prediction of multiphase porous media flow
in all associated length-scales.

The main objective of this manuscript is to report the latest development of a generic
FEM-based unstructured and adaptive-mesh multi-fluid model that can be applied to
both inertia-dominated and porous media flows. In the simulations performed in this
paper we used P1DG-P2 elements and the overlapping CVFEM model [6, 9] where scalar
fields (e.g., volume fraction, concentration, density, etc) are represented in the control
volume (CV) space and the velocity-pressure dual fields are embedded in FEM space
with simultaneous projection into the CV space. High-order accurate downwind schemes
on element boundaries on discontinuous scalar fields are flux-limited (based on NVD ap-
proach) to obtain bounded and compressive (capturing the interfaces) solutions. Section 2
summarises the numerical formulation used in this work, followed by description of the
computational experiment. Finally, conclusions are drawn in Section 4.
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2 NUMERICAL FORMULATION

2.1 Introduction

This section summarises the novel formulation to solve multiphase porous media flows
- the overlapping control volume – discontinuous Galerkin finite element method (OCV-
DGFEM). The method is based on twofold, an overlapping scheme for CV-FEM mixing
formulation and the recently developed PnDG-Pn+1 family of finite element (FE) types.
The underlying mass balance equations (eg, saturation, density, mass fraction, etc.) are
solved in control volume space whereas a Petrov-Galerkin FEM is used to obtain the
high order fluxes on the control volume boundaries which are limited to achieve bounded
mass-based fields (e.g., positiveness of densities and saturations ranging from zero to one).

The family of PnDG-Pn+1 element pair was originally introduced by [2] (see also [3]) for
geophysical fluid dynamics (GFD) applications. In particular, the P1DG-P2 element pair
- linear discontinuous polynomial FE basis function for velocity (P1DG) and quadratic
polynomial FE basis function for pressure (P2), was developed to represent the balance
of geostrophic pressure and velocity without introducing spurious pressure modes. Any
numerical discretisation that is not based upon quads and hexs meshes very often results in
spurious pressure modes due to the unbalancing number of velocity and pressure degrees-
of-freedom [1, 12]. However, tests on the P1DG-P2 element pair proved that this element
is LBB stable and does not present spurious pressure modes on arbitrary unstructured
meshes. Additionally, this family of FE when used with the OCV-DGFEM presented here
results in the exact balance represented by the extended Darcy equation.

2.2 Overlapping CVFEM Formulation

Darcy’s law for single phase flow can be extended for immiscible multiphase flow as

qk = −Krk (Sk) K

µk
(∇pk − suk) , (1)

where qk is the k (∈ {1, Np})-phase Darcy flow rate. S, K, Krk (Sk), µk and φ are sat-
uration, absolute permeability tensor, phase relative permeability, phase viscosity and
porosity, respectively. su is a source term (eg., gravity force) associated with the force
balance and p is the pressure. Defining the advective velocity averaged over the entire
domain – uk = qk/Sk, then we may rewrite Eqn. 1,

σ
k
uk = −∇p+ suk, (2)

σ
k

can be treated as a numerical absorption term with coupled FE and control volume
(CV) representation of the nonlinear convolution of saturation, relative permeabilities,
porosity and permeability tensor fields. σ

k
is piecewise constant within each FE and is

obtained via basis functions local to each CV within each element. Although this approach
can be attractive due to high-order accuracy, the associate computational costs would be

3



W.C. Radunz, F.B.S. Oliveira and J.L.M.A. Gomes

prohibitive for simulations in complex 3D geometries and larger number of calculated
fields. In order to overcome such major computational cost, overlapping (or hybrid) basis
functions are introduced (see [6, 9]) to combine finite element representation for velocity
and pressure and control volume representation for the saturation. The FE velocity and
pressure basis function Q and P are defined as

uk =
Nu∑
j=1

Qjuk,j and p =

Np∑
j=1

Pjpj (3)

where Np and Nu are the number of degrees of freedom for the FE velocity and pressure
representations, respectively. The FEM solution, ΨFEM, is related to the CV solution, Ψ,
by [5] ∫

Ω

Ni (ΨFEM −Ψ) dV = 0, ∀i ∈ {1, 2, ...,N},

where Ni is the FE basis function associated with the i-th degree of freedom. In addition,
the FEM representation of Ψ can be expressed as,

ΨFEM =
N∑
j=1

NjΨFEMj.

For the control volume space, the basis function Mj is used and correlated to Ni by,

BΨFEM = QΨ, (4)

with

B =

∫
Ω

NiNj dV and Q =

∫
Ω

NiMj dV,

and
ΨFEM = (ΨFEM1, . . . ,ΨFEMN )T and Ψ = (Ψ1,Ψ2, . . . ,ΨM)T

Each component of the weak form of Eqn. 2 is tested with the velocity basis function
space to obtain:∑

E

∫
ΩE

Qi

(
σ
k
uk +∇p− suk

)
dV +

1

2

∮
ΓE

Qin (p− pnab) dΓ +

∮
ΓΩ

Qin (p− pbc) dΓ = 0, (5)

where ΩE and ΓE are the volume and boundary of element E, respectively, and ΓΩ is the
boundary of the computational domain. The pressure appearing in the jump condition
pnab is the pressure value on the other side of the element boundary neighbouring element
E. Equation 5 can be represented, in matrix form, as:

Mσu = −Cp + su, (6)

where Mσ, C and su are the sigma-weighted mass matrix, gradient matrix and discretised
source terms, respectively [9].
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Figure 1: Schematics of the simulated domain with Ki.

2.3 Saturation and Global Mass Conservation Equations

The saturation equation,

φ
∂Sk
∂t

+∇ · (ukSk) = scty,k, (7)

can be discretised in space by testing with CV basis functions Mi with the θ-method
[5] in time. Summing the discretised equation over all Nk phases, the global continuity
equation is obtained,

Nk∑
k=1

{∫
Ω

Mi

φ
(
Sk

n+1
i − Skni

)
∆t

dV +

∮
ΓCV i

[
θn+ 1

2 n · un+1
k Sn+1

k +
(

1− θn+ 1
2

)
n · unkSnk

]
dΓ−∫

Ω

Mis
n+θ
cty,k dV

}
= 0, (8)

with the mass conservation constraint,

Nk∑
k=1

Sk
n
i = 1, ∀n,

in matrix form Eqn. 8 becomes,
BTun+1 = sp. (9)
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Figure 2: Snapshots (at t = 0.68 s) for the simulation performed with adaptive (top left) and fixed mesh
grids. Saturation profile (along the indicated vertical line) is shown in r.h.s. for both simulations.

2.4 Solving the Linear Equations

The global mass balance equation (Eqn. 9) and force balance equations (Eqn. 6) are
solved by vanishing the velocity term and solving the system of equations for pressure.
At time level n+ 1, Eqns. 6 and 9 can be rewritten as:{

Mσu
n+1 = Cpn+1 + sn+1

u

BTun+1 = sn+1
p

Application of a discontinuous FEM for velocity leads to a block-diagonal Mσ matrix that
can be readily inverted, each block being local to an element. This system of equation
can be rewritten to produce the pressure equation,

BTM−1
σ Cpn+1 = sn+1

p −BTM−1
σ sn+1

u . (10)

The computationally demanding effort to solve the pressure matrix equation (arising from
the fully discontinuous FEM formulation) is achieved using a multigrid-like approach (see
[6] for further details).
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Figure 3: Snapshots (at t = 0.68 s) for the simulation performed with adaptive (top left) and fixed mesh
grids. Velocity profile (along the indicated vertical line) is shown in r.h.s. for both simulations.

3 RESULTS

Here we simulated a non-linear advection (Richard) equation for the relative saturation
fluid phases representing two-phase immiscible flows in porous media. The fluid 1 is
injected at a velocity u1φ = 1. On the outlet boundary, the pressure level is set to
zero and all remaining boundary conditions are naturally applied. Fixed time-step sizes
of 5×10−4 and 2×10−4 were used in the coarse and adaptive mesh grids, respectively
(see [10, 11] for more details on tetrahedral mesh adaptivity for FEM calculations). All
simulations shown in this Section used the overlapping mixed FEM (Section 2.2) with
a piecewise linear variation of the velocity within each element and quadratic pressure
(P1DG-P2). Saturation is colocated at the pressure nodes and although it is calculated
using a CV formulation, a FEM interpolation is used to form the high-order fluxes. The
2-D domain heterogeneity is introduced by imposing 4 distinct absolute permeabilities
(K) as shown in Fig. 1. There is no flow across the bottom and top edges and the initial
velocity of Fluid 2 is set to zero. In the current set of numerical simulations, mobility
ratio is set to 10 and gravity is assumed negligible.
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Figure 4: Snapshot (at t = 0.19 s) for the simulation performed with heterogeneous media, dual sat-
urated/unsaturated fields (top left) and adaptive mesh. Saturation and velocity profiles (along the
indicated vertical lines) are shown.

3.1 Case 1: Heterogeneous Porous Media Fully Saturated with Fluid 2

In this set of simulations, saturation of phase 2 is set to one throughout the whole
domain (S2 = 1) whereas pure Fluid 1 is injected from the left boundary. Figures 2 and 3
shows simulations performed with fixed coarse (bottom left: 2415 nodes in 4828 triangular
elements – top left of Fig. 5) and adaptive (top left: max 10700 nodes in 20500 elements)
mesh grids. The adaptive mesh, focusing the resolution in the saturation fronts, leads
to the explicit formation of fingers resulted from instability in the pressure field fostered
by a high mobility ratio. It can also be seen two regions with intermediate permeability
(top of the domain, K1 = 2 and K2 = 3, and the central high-permeability square-region
(with K3 = 5), in which the flow accelerates. The high-permeability square-region, where
most of the fingers are formed, are more pronounced in the simulation performed with
fine (and adaptive) mesh, as shown in Fig. 3.
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Figure 5: Snapshots of the simulations with fixed (top left) and adaptive mesh grids. Simulation
performed with initial saturated media in the square-region is shown in the bottom.

3.2 Case 2: Heterogeneous Saturated/Unsaturated Porous Media

In the simulation performed here, the square-region (K3 = 5) is initially saturated
with the injected Fluid 1. Figures 4 and 5 (bottom) show the trapped phase displacement
during the injection. The initial shape of Fluid 1’s front near the inlet are very similar
to the cases studied in the previous section. At the top, it can be seen the first layer’s
flow (region with K1 = 2) developing faster and the second layer slightly slower. This
behaviour can also be noticed in Fig. 4, where the velocity sharply increases from the
smaller to the larger permeability region. Figure 4(c) shows that the saturation front
has an inverse-exponential shape near the inlet, and then residual saturation at the high-
permeability square (as enforced by the Corey expression for the relative permeability).
The behaviour along the top two layers’ interface is initially inverse exponential followed
by an abrupt decrease in saturation front due to fingering. Saturation then increases
quickly at the top layer, which will show a high velocity region.

4 CONCLUSIONS

This article summarises the new overlapping control volume finite element method
for multi-fluid flows. The new formulation is based upon a dual consistent pressure-
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velocity representation in CV and FEM spaces and a novel family of element types –
PnDGPn+1. The aim of this paper is to further apply the formulation (embedded in the
Fluidity software framework) to multiphase flows in heterogeneous porous media. The
OCV-DGFEM was specially designed to ensure that for uniform viscous frictional forces
– σ

k
= µkSk (KrkK)−1, the balance in 1D Darcy multiphase flow equations is strictly

enforced. Saturations are collocated (piecewise constant) in control volume space whereas
permeabilities is piecewise constant in FE space to ensure the correct representation of the
surface. In addition, the velocity field (for each phase) is described as a functional of σ and
pressure. For a quadratic pressure variation there will be a piecewise linear velocity field,
with discontinuities at element and control volume boundaries. The formulation was able
to simulate multiphase flows in heterogeneous porous media with unsaturated/saturated
fluid distribution.
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