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Abstract. The appropriate procedure for constructing symmetric conservative metrics
is presented with which both of the freestream preservation and global conservation prop-
erties are satisfied in the high-order conservative flux-reconstruction scheme on a three-
dimensional stationary-curvilinear grid. A freestream preservation test is conducted, and
the symmetric conservative metrics constructed by the appropriate procedure preserve the
freestream with regardless of the order of shape functions, while other metrics cannot al-
ways preserve the freestream. Also a convecting vortex is computed on three-dimensional
wavy grids, and the formal order of accuracy is achieved when the symmetric conserva-
tive metrics are appropriately constructed, while it is not when they are inappropriately
constructed.

1 Introduction

Recently, various methods with high-order spatial accuracy have been developed on
unstructured grids, e.g., discontinuous Galerkin (DG), spectral difference (SD), spectral
volume (SV), and flux reconstruction (FR) schemes [1][2]. The present study focuses on
the FR scheme [1], which computes with an accuracy similar to that of the DG scheme,
but with reduced computational cost. Specifically, the study investigates the conservative
FR scheme [2], in which the governing equation is expressed in a strong conservation form.

When computing flows around complex geometries using conventional high-order finite-
difference schemes, the generalized (body-fitted) coordinate system is frequently adopted.
In this construct, the fidelity of the represented boundary shape directly depends on the
number of grid points. In contrast, in the FR scheme, the boundary shape of each cell
is analytically defined by a high-order shape function. Consequently, the number of com-
putational grid points, which should be predetermined, is significantly reduced. Such a
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vast reduction of grid points also alleviate some of the difficulties in generating grids with
complicated geometries. However, despite the strong conservation form of the governing
equation, the use of the generalized coordinate system and high-order shape functions
often fails to compatibly satisfy both of the freestream preservation [3] and global conser-
vation [4][5] properties 1. A versatile technique [6][7][8][9][10][4][5][11] has been introduced
for high-order finite-difference schemes, in which a metric is analytically re-expressed in
conservative form. The use of conservative metrics is similarly expected to ensure both of
the freestream preservation and global conservation properties in the FR scheme, but the
implementation is not straightforward. In a study of the discontinuous spectral element
(DSE) scheme, Kopriva [3] demonstrated that if the order of the solution is less than twice
of the order of the shape function, then freestream is not preserved with nonconservative
(cross product form) metrics. Kopriva also proposed a scheme that satisfies freestream
preservation through applying conservative metrics. However, the following items are
still unclear: 1) The conditions required for compatibly satisfying both of the freestream
preservation and global conservation properties; 2) Detailed procedures for constructing
conservative metrics which satisfy the freestream preservation property; 3) The accuracy
of numerical solutions based on conservative metrics. Therefore, in this paper, the follow-
ing items are newly summarized for the FR scheme: 1) Compatible conditions required
for satisfying both of the freestream preservation and global conservation properties are
presented (Sec. 2.3 and Sec. 3); 2) Detailed procedures are established for constructing
conservative metrics which satisfy the freestream preservation property without neglect-
ing the global conservation property (Sec. 4); 3) The order of accuracy of the numerical
solutions based on the conservative metrics is evaluated (Sec. 5).

2 Conservative flux-reconstruction scheme

2.1 Coordinate system and inner degrees of freedom

The computational domain is subdivided into hexahedral cells. Each hexahedral cell
in the Cartesian coordinate system {x, y, z} of physical space is mapped onto a standard
cube cell Es := {ξ, η, ζ| − 1 ≤ ξ, η, ζ ≤ 1} in the generalized coordinate system {ξ, η, ζ}
of computational space. Figure 1 shows one cell in the case of N = 1. The GP is defined
at the cell vertex (the blue points in Fig. 1). In this study, the Gauss point is applied to
SP.

2.2 Discretization of the governing equations

In the following, the indices i, j, and k indicate GPs, and p, q, and r indicate SPs (Gauss
points). The shape of the nth cell is approximated by the tensor product:

rGP ;N
n (ξ, η, ζ) := IGP ;N [rn] =

N∑
i,j,k=0

MN
n;i(ξ)M

N
n;j(η)MN

n;k(ζ)rn;i,j,k, (1)

1The global conservation property is called “integrated conservation property” in [4][5].
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Fig. 1: Schematic of grid, solution and flux points in each cell. The orders of the shape function and
solution polynomial are N = 1 and K = 2, respectively.

where MN
n;i(ξ), MN

n;j(η), and MN
n;k(ζ) are the shape functions for GP at (ξi, ηj, ζk). The

Jacobian for coordinate transformation is J := |∂(x, y, z)/∂(ξ, η, ζ)|, and the metrics (e.g.,
ξ̂x := ξxJ) are defined 2 as follows:

ξ̂x = yηzζ − zηyζ , J = xξyηzζ − xηyξzζ + xζyξzη − xξyζzη + xηyζzξ − xζyηzξ, (2)

Hereafter, each analytical form in Eq.(2) is called a nonconservative form (NC). The
compressible Euler equations in the generalized coordinate system are

∂τ Q̂ + ∂ξÊ + ∂ηF̂ + ∂ζĜ = 0, (3)

To solve the governing equation (3), the spatial distribution of the conservative quantity
in the nth cell, Qn, is approximated by the tensor product for the Kth-order Lagrange
polynomial interpolation using (K + 1)3 discrete values of Qn at SPs. The present ap-
proximation of Qn is denoted as QSP ;K

n := ISP ;K [Qn]. Specifically, we have

QSP ;K
n := ISP ;K [Qn] =

K∑
p,q,r=0

φK
n;p(ξ)φ

K
n;q(η)φK

n;r(ζ)Qn;p,q,r, (4)

where φK
n;p is the Kth-order Lagrange polynomial. When the Kth-order polynomial in-

terpolation is employed, a spatial (K + 1)th-order scheme is formulated.
Next, we explain the procedure for the computation of flux divergence at each SP.

Without loss of generality, we consider only the differential in the ξ-direction of Ê in the
nth cell, keeping the other coordinates fixed (η = ηq, ζ = ζr). Using the discrete values of

QSP ;K
n at SP, the nth cell inner distributions ÊSP

n and ∂ξÊ
SP
n are expressed by a Kth-order

polynomial interpolation as follows:

ÊSP ;K
n (ξ) = ISP ;K [ÊSP

n ](ξ) ≡
K∑

p=0

φK
n;p(ξ)Ê

SP
n;p,q,r. (5)

2In this paper, the partial derivative of a physical quantity f in the x-direction is denoted ∂xf or fx;
both notations are used interchangeably.
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Since this flux is constructed without information from the adjacent cells, ÊSP ;K
n is discon-

tinuously distributed. Therefore, the reconstructed flux ÊC
n is defined to be continuous at

the cell boundaries. First, a flux point (hereafter “FP”: red points in Fig. 1) is placed at
the intersection of the planes surrounding the cell and lines passing through SPs in each
direction at the cell boundaries. Next, the solutions of QL and QR at FPs on both sides of
the boundaries are extrapolated using Eq.(4), and Êcom is determined by an approximate
Riemann solver. Finally, the original Kth-order flux ÊSP ;K

n is modified such that ÊC
n

equals Êcom at FP:

ÊC
n (ξ) = ÊSP ;K

n (ξ) +
[
Êcom

n−1/2 − ÊSP ;K
n (−1)

]
gL(ξ) +

[
Êcom

n+1/2 − ÊSP ;K
n (+1)

]
gR(ξ). (6)

Here, the subscripts n ∓ 1/2 indicate the left and right boundaries, respectively, of the
nth cell. gL(ξ) is a (K + 1)th-order polynomial in which the left and right boundaries
(ξ = −1 and ξ = +1, respectively) are valued at 1 and 0, respectively. gR is the symmetric
function of gL about the origin (gR(ξ) = −gL(−ξ)).

2.3 Global conservation property

The global conservation property specifies that the integration of conservative quanti-
ties over the computational region is conserved [4]. Even if the strong conservation form
is adopted in the governing equation, the global conservation property is violated if the
discretization is inappropriate. First, we discuss the conservation property within individ-
ual cells Ωn (the local conservation property). Within the nth cell, the local conservation
property holds if the following equation is satisfied:∫

Ωn

∂ξÊ
C
n dξ = Êcom

n+1/2 − Êcom
n−1/2, (7)

where Ωn indicates the closed domain in the nth cell. The flux ÊC
n obtained in Eq.(6) is

the continuous Kth-order polynomial found within the cells containing boundaries and
satisfies Eq.(7). Because SPs are Gauss points, ÊSP ;K

n (±1) in Eq.(6) is extrapolated from
ÊSP ;K

n in Eq.(5). In such cases, the flux must be computed after extrapolating the conser-
vative quantity Qn to avoid nonconformities introduced by the polynomial interpolation
approximation. Next, we discuss the conservation property within the computational do-
main V (the global conservation property). If the local conservation property holds within
each cell Ωn, as a sufficient condition for the global conservation property, the following
equation must be satisfied within an arbitrary closed domain ∀Ω ⊂ V :∑

n∈∀Ω

∫
Ωn

∂ξÊ
C
n dξ =

∑
n∈∀Ω

(Êcom
n+1/2 − Êcom

n−1/2) = Êcom
n

max of ∀Ω
+1/2 − Êcom

n
min of ∀Ω

−1/2, (8)

where (nmax of ∀Ω + 1/2) and (nmin of ∀Ω − 1/2) indicate the upper and lower boundary of
the closed domain ∀Ω, respectively. Regarding Êcom

n±1/2 at each cell boundary (at FP), if
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the adjacent cells share a common value, the total sum in the left-hand side of Eq. (8) is
the boundary integral of the closed domain ∀Ω. Therefore, Eq.(8) is numerically satisfied
by uniquely determining Êcom

n±1/2 on each cell boundary (at FPs), and thereby gives a
sufficient condition for the global conservation property.

If the grid is shaped by curved lines, the metrics used in Êcom
n±1/2 may not be uniquely

determined at the boundaries between adjacent cells, and the condition is violated. There-
fore, we obtain the appropriate evaluation method for metrics, inspired by the previously
proposed methods on characteristic interface conditions formulated in finite-difference
schemes [12]. In our method, the metrics are constructed by interpolating common dis-
crete values found in each adjacent cell. In this study, all metrics will be constructed
to guarantee the global conservation property. Compatible combination of the concepts
for freestream preservation and global conservation properties requires special ingenuity,
since the freestream preservation property is independently (locally) treated in each cell
whereas the global conservation property considers the values of adjacent cells.

3 Conditions for freestream preservation in the FR scheme

Although the freestream preservation property is often violated in finite-difference
schemes, it has not been adequately discussed in either the DG or FR schemes [3] when the
cells are expressed by high-order shape functions. In this section, we organize and collate
all sufficient conditions for freestream preservation in the FR scheme. In the following,
we discuss the interior of the nth cell (partially abbreviating the subscripted n values).
The conditions for freestream preservation at SPs are reduced to the surface closure law
(SCL identities) [4][5] given by

∂ξ ξ̂
C
x + ∂ηη̂

C
x + ∂ζ ζ̂

C
x = 0, ∂ξ ξ̂

C
y + ∂ηη̂

C
y + ∂ζ ζ̂

C
y = 0, ∂ξ ξ̂

C
z + ∂ηη̂

C
z + ∂ζ ζ̂

C
z = 0. (9)

The metric ξ̂C
x = {ξxJ}C is hereafter referred to as the “reconstructed metric”. Adhering

to Eq.(6), ξ̂C
x is written as

ξ̂C
x (ξ) = ξ̂SP

x (ξ) +
[
ξ̂GP
x (−1) − ξ̂SP

x (−1)
]
gL(ξ) +

[
ξ̂GP
x (+1) − ξ̂SP

x (+1)
]
gR(ξ). (10)

Here, ξ̂SP
x and ξ̂GP

x are the interpolating polynomials constructed from the discrete metric
values at SPs and GPs, respectively. The ±1 argument indicates FP at the left and right
sides of each cell. It should be noted that if the metric in FP is not set to ξ̂GP

x (±1) and
if the equation is not constructed to search for common values in the shared FPs among
adjacent cells, the global conservation property will deteriorate. Rewriting the left-hand
side of SCL identity (Eq.(9)) by the expression of Eq.(10), we obtain

Left-hand side of Eq.(9) ⇐⇒

∂ξ ξ̂
SP
x + ∂ηη̂

SP
x + ∂ζ ζ̂

SP
x SP part

+
[
ξ̂GP
x (−1) − ξ̂SP

x (−1)
]
dgL(ξ)/dξ + . . .

correction part

. (11)
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The conditions under which both underlined terms (SP and correction parts) in Eq.(11)
equal 0 at SPs are summarized bellow. When computing the metric, if any of the condi-
tions described below are satisfied, then SP part becomes zero at SP:

Sufficient conditions for SP part being equal to 0� �
(A-1) The nonconservative metric is used while the order of the solution polynomial

is equal to or greater than twice of the order of the shape function.
or

(A-2) The symmetric conservative metric is used (the order of the solution polyno-
mial is greater than that of metrics, as shown in Appendix A).� �

If condition (A-1) is satisfied, the value of ∂ξ ξ̂
SP
x (ξ) computed by NC corresponds to the

analytical value defined by the shape function, and SP part becomes zero. In contrast,
the symmetric conservative metrics (SC) as specified in condition (A-2) are expressed in
terms of TA, TB, and TC as shown below:

ξ̂x = {(yηz − zηy)ζ − (yζz − zζy)η}/2 = TAζ − TBη, η̂x = TBξ − TCζ , ζ̂x = TCη − TAξ. (12)

Although these equations are analytically equivalent to the nonconservative metric given
by Eq.(2), they generally differ when discretized in the computation. If the symmet-
ric conservative metric is used, SP part becomes zero under the conditions defined in
Appendix A because the interpolation and differentials are commutative.

When computing the metrics, the following condition ensures that the correction part
in Eq.(11) becomes zero:

Sufficient condition for correction part being equal to 0� �
(B) ξ̂GP

x (±1) = ξ̂SP
x (±1), η̂GP

x (±1) = η̂SP
x (±1), and ζ̂GP

x (±1) = ζ̂SP
x (±1).� �

When conditions A are met for the SP part, condition (B) is concurrently satisfied in our
framework locating some of GP at the cell boundaries (see Sec. 2.3).

4 Computational procedure for constructing the metrics

This section details the procedures for implementing all three forms of the metrics (the
nonconservative (NC), symmetric conservative (SC), and high-order symmetric-conservative
metric (SCHGP)).

4.1 Nonconservative metric (NC)

NC is the typical form of a metric. It is described by Eq.(2) and computed by the
following procedure.
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Step 1:Nth-order interpolating polynomial y

Define the Nth-order interpolating polynomial for y (and similarly for z) based on the
discrete values at GPs using the Nth-order shape functions as follows:

IGP ;N [y] =
N∑

i,j,k=0

MN
i (ξ)MN

j (η)MN
k (ζ)yi,j,k, (13)

Step 2:Nth-order interpolating polynomial yn

Compute the Nth-order interpolating polynomial for yη (and similarly for another
differential) using the Nth-order shape function and the coordinate values at GPs:

∂ηI
GP ;N [y] =

N∑
i,j,k=0

MN
i (ξ)dMN

j (η)MN
k (ζ)yi,j,k, (14)

where dMN
j (ξ) := dMN

j /dξ denotes differentiation of MN
j (ξ) with respect to ξ.

Step 3: 2Nth-order interpolating polynomial ξ̂GP ;2N
x

Compute the 2Nth-order interpolating polynomial for ξ̂x as follows:

ξ̂GP ;2N
x = ∂ηI

GP ;N [y]∂ζI
GP ;N [z] − ∂ζI

GP ;N [y]∂ηI
GP ;N [z]. (15)

Since this polynomial matches the metric of the exact grid shape (which is analytically
defined by the Nth-order shape function), ξ̂GP ;2N

x is hereafter referred to as the true
metric.

Step 4: Kth-order interpolating polynomial ξ̂SP ;K
x

Reconstruct the Kth-order interpolating polynomial for ξ̂x from the discrete values at
SP of the ξ̂GP ;2N

x given by Eq.(15):

ξ̂SP ;K
x = ISP ;K [ξ̂GP ;2N

x ] =
K∑

p,q,r=0

φK
p (ξ)φK

q (η)φK
r (ζ)ξ̂GP ;2N

x;p,q,r . (16)

The reconstructed metric ξ̂C
x given by Eq.(10) is computed from ξ̂SP ;K

x and ξ̂GP ;2N
x , which

respectively replace ξ̂SP
x and ξ̂GP

x in Eq.(10). When K ≥ 2N , ξ̂SP ;K
x is the true metric

ξ̂GP ;2N
x

3. The interpolation from ξ̂GP ;2N
x to ξ̂SP ;K

x in Step 4 may introduce truncation

3Although ξ̂SP ;K
x = ξ̂GP ;2N

x holds at SP, it does not hold elsewhere (see Appendix A). Therefore,
∂ξ ξ̂

SP ;K
x 6= ∂ξ ξ̂

GP ;2N
x , and each item in the SCL identity is not analytically matched.
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and aliasing errors when K < 2N . Therefore, when the NC is used for metrics, the SCL
identity is satisfied only when K ≥ 2N . Consequently, the implementation of NC for the
freestream preservation becomes increasingly difficult as the order of the shape function
increases. For example, when the order of the shape function N is 2, the order of the
solution K must be 4. Additionally, when grids are moving and deforming, the metric
computation involves three-dimensional nonlinear terms (for example, xtyζzη), requiring
an additional strict condition K ≥ 2N +Nt (here, N and Nt denote the order of the shape
function in the spatial and temporal directions, respectively).

4.2 Symmetric conservative metric (SC)

When SC is applied, since the differential used in the construction of TA and TB given
by Eq.(12) commutes with the differential in the flux divergence, the SCL identity given
by Eq.(9) is satisfied in the absence of a true metric given by Eq.(15). Therefore, the
acceptable range of the order of solution broadens from K ≥ 2N to K ≥ N (see Appendix
A). Step 1 and Step 2 in the construction of SC are identical to Step 1 and Step 2 of NC,
and are hence omitted.

Step 3: 2Nth-order interpolating polynomial TGP ;2N
A , TGP ;2N

B

Compute the 2Nth-order interpolating polynomials TA (and similarly for TB) using the
Nth-order shape function and the coordinate values at GP:

2TGP ;2N
A = ∂ηI

GP ;N [y]IGP ;N [z] − ∂ηI
GP ;N [z]IGP ;N [y]. (17)

Step 4: Nth-order interpolating polynomial ξ̂GP ;N
x

Define the interpolating polynomial ξ̂x = TAζ−TBη using the Nth-order shape function:

ξ̂GP ;N
x = ∂ζI

GP ;N [TGP ;2N
A ] − ∂ηI

GP ;N [TGP ;2N
B ]

=
N∑

i,j,k=0

{
MN

i (ξ)MN
j (η)dMN

k (ζ)TGP ;2N
A;i,j,k − MN

i (ξ)dMN
j (η)MN

k (ζ)TGP ;2N
B;i,j,k

}
. (18)

Because ξ̂GP ;N
x in Eq.(18) is computed by an Nth-order interpolation using the discrete

values TA and TB, ξ̂GP ;N
x always differs from the true metric ξ̂GP ;2N

x .

Step5: Kth-order interpolating polynomial ξ̂SP ;K
x

Reconstruct the Kth-order interpolating polynomial from the discrete values of ξ̂GP ;N
x

at SP:

ξ̂SP ;K
x = ISP ;K [ξ̂GP ;N

x ] =
K∑

p,q,r=0

φK
p (ξ)φK

q (η)φK
r (ζ)ξ̂GP ;N

x;p,q,r. (19)
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The reconstructed metric ξ̂C
x given by Eq.(10) is computed from ξ̂SP ;K

x and ξ̂GP ;N
x which

respectively replace ξ̂SP
x and ξ̂GP

x in Eq.(10). If K < N , because Kth-order ξ̂SP ;K
x is

reconstructed using a lower-order interpolation of Nth-order ξ̂GP ;N
x , error occurs in the

reconstruction 4. Moreover, even if the order of the solution K is sufficiently high (K ≥
2N), ξ̂SP ;K

x corresponds to ξ̂GP ;N
x but not to the true metric ξ̂GP ;2N

x . Therefore, the
obtainable order of accuracy in the computational solution is not expected to exceed that
in the metric (see Sec. 5).

4.3 Symmetric-conservative high-order metric (SCHGP)

Our proposed symmetric-conservative high-order metric (SCHGP) overcomes the two
defects in SC by conforming the metric constructed at GPs to the Kth-order of the
solution. In the construction of SCHGP, Step 1 and Step 2 are identical to NC, and Step
3 is identical to SC.

Step 4: Kth-order interpolating polynomial ξ̂GP ;K
x

Define ξ̂x = TAζ−TBη using a Kth-order interpolating polynomial. Here, hi, hj, and hk
denote the (K + 1)3 points (hereafter referred to as “high-order grid point (HGP)”). The
HGPs do not need correspond to SPs. However, the global conservation property must
be considered, and in each direction, the HGP must be placed within the cell boundaries
(indicated by triangles in Fig. 2). Therefore, HGPs are always positioned at GPs at cell
vertex.

ξ̂HGP ;K
x = ∂ζI

HGP ;K [TGP ;2N
A ] − ∂ηI

HGP ;K [TGP ;2N
B ]

=
K∑

hi,hj,hk=0

{
MK

hi (ξ)M
K
hj(η)dMK

hk(ζ)TGP ;2N
A;hi,hj,hk − MK

hi (ξ)dMK
hj(η)MK

hk(ζ)TGP ;2N
B;hi,hj,hk

}
. (20)

Because the computation of ξ̂HGP ;K
x in Eq.(20) involves a Kth-order interpolation using

the discrete values TA and TB, ξ̂HGP ;K
x corresponds to the true metric ξ̂GP ;2N

x when K ≥
2N .

Step 5: Kth-order interpolating polynomial ξ̂SP ;K
x

Reconstruct the Kth-order interpolating polynomial ξ̂x from the discrete values of
ξ̂HGP ;K
x at SP:

ξ̂SP ;K
x = ISP ;K [ξ̂HGP ;K

x ] =
K∑

p,q,r=0

φK
p (ξ)φK

q (η)φK
r (ζ)ξ̂HGP ;K

x;p,q,r . (21)

4When K < N , because ξ̂GP ;N
x 6= ξ̂SP ;K

x at all location with the exception of SP, the metric ξ̂SP ;K
x

cannot be written in the forms as found in Eq.(18) or in Eq.(22) of Appendix A.
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The reconstructed metric ξ̂C
x given by Eq.(10) is computed from ξ̂SP ;K

x and ξ̂HGP ;K
x which

respectively replace ξ̂SP
x and ξ̂GP

x in the original Eq.(10). Because ξ̂SP ;K
x in Eq.(21) is

computed by a Kth-order interpolation using the discrete values of ξ̂HGP ;K
x , the following

equality always holds: ξ̂SP ;K
x = ξ̂HGP ;K

x . As shown in Appendix A, ξ̂SP ;K
x satisfies the

SCL identities (SP part= 0), and ξ̂SP ;K
x = ξ̂HGP ;K

x also holds at FPs as well (correction
part= 0). The conditions under which the three metrics satisfy freestream preservation
property are summarized in Table 1. Here, K and N specify the orders of the solution
and shape function, respectively.

Table 1: Expected freestream preservation characteristics of the metrics (◦ indicates freestream preser-
vation; • indicates violation of freestream preservation property)

Order of solution K K < N N ≤ K < 2N 2N ≤ K
NC • • ◦
SC • ◦ ◦

SCHGP ◦ ◦ ◦

5 Computational test

In this section, we perform computational tests for metrics in NC, SC, and SCHGP.
We consider a compressible inviscid fluid assumed as an ideal gas with specific heat ratio
γ = 1.4 (relative to air). The governing equation is Eq.(3), and three-dimensional wavy
grids are used. The flow fields are assumed to be periodic. We first conduct the freestream
preservation test, and obtain the result that the relationship between the metrics which
preserve the freestream and the order of the solution polynomial exactly comply with
those listed in Table 1 (not presented in this paper). Next, a convecting two-dimensional
vortex [13] is examined. Computations are performed until the convecting vortex returns
to its initial position. The pressure distribution on the plane at constant z is shown in
Fig. 3. Comparing this figure with Table 1, we find that the vortex degrades when the
freestream is not preserved, but is retained when freestream is preserved. In particular,
when the solution order K = 4, the vortex is much better preserved in the SCHGPs and
NCs than in the SCs. This result demonstrates that even if the freestream is preserved,
the vortex degrades if the order of the metric is below that of the solution polynomial
(see Sec. 4.2). The L2-norm of the swirl velocity v is shown in Fig. 4. Solutions do not
properly converge when the freestream preservation is violated (see Fig. 4(a): p1–p3 for
NC, Fig. 4(b): p1 for SC). In contrast, SCHGP shows increasingly improved convergence
at higher orders. On the other hand, as in Sec. 4.2, even if the order of the solution is
sufficiently high (K > 2), the order of the SC metrics cannot exceed the order of the shape
function (N = 2). That is, regardless of the order of numerical solutions, convergence in
SC cannot be improved beyond that of p2 in Fig. 4(b). Therefore, when the metrics are
evaluated by SC, the order of the numerical solution is strictly limited by the order of
metrics.
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(a) NC (b) SC (c) SCHGP

Fig. 2: Schematic of NC, SC, and SCHGP metric with N = 1 and K = 2.

(a) NC (K = 1) (b) NC (K = 2) (c) NC (K = 3) (d) NC (K = 4)

(e) SC (K = 1) (f) SC (K = 2) (g) SC (K = 3) (h) SC (K = 4)

(i) SCHGP(K = 1) (j) SCHGP(K = 2) (k) SCHGP(K = 3) (l) SCHGP(K = 4)

Fig. 3: Contours of pressure distribution on a horizontal (z-constant) plane.
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 30  40  50
DoF

p1, sc
p2, sc
p3, sc
p4, sc

 30  40  50

DoF

p1, scHGP

p2, scHGP

p3, scHGP

p4, scHGP

(a) NC (b) SC (c) SCHGP

Fig. 4: Order of accuracy of the NC, SC, and SCHGP metrics.

6 Conclusions

We have evaluated the conservative metrics in a high-order conservative FR scheme
implemented on a three-dimensional stationary-curvilinear grid with high-order elements.
The main findings of this research are summarized below: 1) If both of the SP and cor-
rection parts (Eq.(11)) vanish, the reconstructed flux will preserve the freestream. A suf-
ficient condition for global conservation is that the metric values are uniquely determined
at each cell boundary; 2) We have proposed SCHGP metric that compatibly satisfies both
the freestream preservation and global conservation properties for arbitrary orders of the
solution. The SCHGP is constructed such that the order of the metric exactly matches
the order of the solution. 3) When SCHGP was applied to metrics, the freestream preser-
vation was attained in the arbitrary order of solution, and the convecting vortex was well
preserved with maintaining the formal order of accuracy. On the other hand, when SC
(inappropriate implementation of the symmetric conservative metrics) is adopted to the
metric, the order of the computational solution is limited by the order of the metric. The
proposed technique (SCHGP) is expected to be applicable to the high-order conservative
FR scheme with moving and deforming grids although it is beyond the scope of this pa-
per. Finally, when the Radau polynomial is used as a correction function, the freestream
preservation error cannot be discussed in the current framework because the SP and cor-
rection part will cancel each other in some cases, which is discussd in detail in another
paper [14].
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Appendix A Symmetric conservative metrics and surface closure law

We defined the following interpolating polynomials for the symmetric conservative
metric (this is equivalent to Eq. (18) or (20)):

ξ̂GP ;N
x = ∂ζI

GP ;N [TA] − ∂ηI
GP ;N [TB]. (22)

When the solution is of K, the SCL identity (9) is computed by:

∂ξI
SP ;K [ξ̂GP ;N

x ] + ∂ηI
SP ;K [η̂GP ;N

x ] + ∂ζI
SP ;K [ζ̂GP ;N

x ] (23)

= ∂ξI
SP ;K [∂ζI

GP ;N [TA]] − ∂ζI
SP ;K [∂ξI

GP ;N [TA]] + · · · = 0. (24)

We consider the sufficient conditions under which the underlined part of Eq.(24) becomes
zero. We rewrite the underlined part of Eq.(24) as follows:

K∑
q=0

N∑
j=0

φK
q (η)φN

j (ηq)

[
K∑

r=0

N∑
k=0

φK
r (ζ)dφN

k (ζr)︸ ︷︷ ︸
(ii-a)

{
K∑

p=0

N∑
i=0

dφK
p (ξ)φN

i (ξp)︸ ︷︷ ︸
(i-a)

TA;i,j,k

}]

−
K∑

q=0

N∑
j=0

φK
q (η)φN

j (ηq)

[
K∑

r=0

N∑
k=0

dφK
r (ζ)φN

k (ζr)︸ ︷︷ ︸
(ii-b)

{
K∑

p=0

N∑
i=0

φK
p (ξ)dφN

i (ξp)︸ ︷︷ ︸
(i-b)

TA;i,j,k

}]
(25)

Both (i-a)=(i-b) and (ii-a)=(ii-b) are sufficient conditions for reducing Eq.(25) to zero.
Differentiation and interpolation become commutative if and only if K ≥ N . Under
this condition, both of (i-a)=(i-b) and (ii-a)=(ii-b) hold. The other underlined terms in
Eq.(24) similarly become zero only when K ≥ N . Therefore, the symmetric conservative
metric expressed in the form of Eq.(22) satisfies the SCL identity only when K ≥ N .
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