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Summary: In recent years, the nonlinear dynamic behavior of the foundation and soil has 
been studied actively. When dealing with a nonlinear problem, the Finite Element Method 
(FEM) is an effective and flexible technique. When applying this to the wave propagation 
problem of infinity or a semi-infinite elastic body, the transmission processing is needed on 
the boundary of an analytical area at the same time for both of the incident wave, which is 
incoming from the exterior to an inside, and the reflected wave which is outgoing from an 
inside to the exterior.  

Although the viscous boundary is a typical tool for the transmission processing in the 
elastic wave field, it is an approximate method for more than one dimensional field. The 
Cubic Interpolated Propagation (CIP) method is an outstanding method which can separate 
the incident wave and the reflected wave by transforming the wave equation to a number of 
advection ones. By applying this technique to the transmission processing at the boundary of 
FEM domain, we can formulate a new method with high precision for the wave analysis 
named by FEM and CIP Combined Method. 

A computational procedure is described for one dimensional problem and the analytical 
examples of one and two-dimensional problem are shown for the validity of the proposed 
method. 

When we analyze wave propagation in the limited analytical region, we could model the 
ground by FEM and CIP Combined Method as if it were extended infinitely. 
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1 INTRODUCTION 
The equations of motion on the three dimensional elasticity are described first, and 

converted to a set of advection equations next. While FEM is a general computational method 
to solve the equations of motion, CIP method has been developed particularly for the 
advection equations [1]. The main purpose of this paper is to explain the basic computational 
procedure on how to combine FEM with CIP method in order to realize the transmitting 
boundary of FEM domain. The analytical examples with one and two-dimensions are shown 
for the validity of a proposed method. 

2 EQUATION OF MOTION IN ELASTIC BODY 
The fundamental equations on motion in n dimensional elastic body ( 1, 2, 3n = ) are 

expressed as follows. 

 1{ } [ ]{ }, { } { }.u u u
t t

σ
ρ

∂ ∂
= ℑ =

∂ ∂
   (1) 

 { } [ ]{ } [ ][ ] [ ]TD D uσ ε= = ℑ   (2) 
where { }u , { }σ  and { }ε  are vectors of displacement, strain and stress respectively, ρ  is 
mass density, t  is time, [ ]ℑ  is the partial differential operator matrix, and [ ]D  is the material 
property matrix consisting of  Young’s modulus E  and Poison’s ratio ν . 
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Substituting Eq.(2) into Eq.(1), the equations of motion in an elastic body is written as 
follows. 

 
2

2

1{ } [ ][ ][ ] { }Tu D u
t ρ
∂

= ℑ ℑ
∂

  (3) 

3 ADVECTION EQUATION IN ELASTIC BODY 
Instead of Eq.(3), we can deal with an elastic wave field by using Eqs.(1) and (2) 

simultaneously [2]. 

 
1[0] [ ]{ } { }[ ] [0]

{ } { }[0] [ ][ ] [0]

TIu u
t

D
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σ σ
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 

  (4) 

This equation is also expressed as follows. 

 { } [ ][ ]{ }F A Q F
t
∂

=
∂

  (5) 

where 

 [ ] [ ] [ ] [ ]x y zQ q q q
x y z
∂ ∂ ∂

= + +
∂ ∂ ∂

.  (6) 

Therefore, we rewrite Eq.(5) as 

 { } [ ] { } [ ] { } [ ] { }x y zF A F A F A F
t x y z
∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂

  (7) 

where 
 [ ] [ ][ ], , ,s sA A q s x y z= = . (8) 
Since it is difficult to solve Eq.(7), the three dimensional problem is approximately 

decomposed into three independent one dimensional ones. 

 { } [ ] { }, , ,sF A F s x y z
t s
∂ ∂

= =
∂ ∂

  (9) 

Here, we consider the farther decomposition through the eigen value problem. 
By using the eigen matrix [ ]sϕ  of [ ]sA , the vector { }F  can be expressed as 
 { } [ ]{ }, , ,s sF f s x y zϕ= = .  (10) 
 1 2 3 4 5 6 7 8 9{ } { , , , , , , , , }T

s s s s s s s s s sf f f f f f f f f f=   (11) 
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From Eqs.(9) and (10), the advection equation is obtained. 

 1{ } [ ] [ ][ ] { } [ ] { }s s s s s sf A f f
t s s

ϕ ϕ−∂ ∂ ∂
= = Λ

∂ ∂ ∂
  (12) 

where [ ]Λ  is the diagonal eigenvalue matrix as follows. 
 diagonal([ ]) ( , , , , , ,0,0,0)p p s s s sc c c c c cΛ = − − − , (13) 

 1 / , /p sc D c Gρ ρ= = .  (14) 
From Eq.(10), the following relation is obtained. 
 1{ } [ ]{ }, [ ] [ ] [ ]r rs s rs r sf T f T ϕ ϕ−= =   (15) 
The transfer matrix [ ]rsT  can be arranged to satisfy the following relation. 
 [ ] [ ] [ ] [ ]yx zy xzT T T T= = =   (16) 
The flow of decomposition analysis is summarized in the following. 

 
0. The initial value { }F  at 0t =  is converted to 1{ } [ ] { }x xf Fϕ −= . 

1. { }xf  is advected during t∆  in the x-direction by the equation: { } [ ] { }x xf f
t x
∂ ∂

= Λ
∂ ∂

 and 

newly obtained { }xf  is converted to { } [ ]{ }y xf T f= . 

2. { }yf  is advected during t∆  in the y-direction by the equation: { } [ ] { }y yf f
t y
∂ ∂

= Λ
∂ ∂

 and 

newly obtained { }yf  is converted to { } [ ]{ }z yf T f= . 

3. { }zf  is advected during t∆  in the z-direction by the equation: { } [ ] { }z zf f
t z
∂ ∂

= Λ
∂ ∂

 and 

newly obtained { }zf  is converted to { } [ ]{ }x zf T f= . 
4. { } [ ]{ }x xF fϕ=  obtained at the end of this step is memorized, and return to 1. 
 
The matrices used in the above numerical flow in case of 3n =  are shown as follows. 

 

 

2 2

/ 2 / 2 1/ (2 ) 1/ (2 ) 0 0 1/ 2 0 0
/ 2 / 2 1/ (2 ) 1/ (2 ) 0 0 1/ 2 0 0
0 0 0 0 1/ 2 1/ 2 0 0 1/ 2
0 0 0 0 1/ 2 1/ 2 0 0 1/ 2

[ ] / 2 / 2 1/ 2 1/ 2 0 0 0 0 0
/ 2 / 2 1/ 2 1/ 2 0 0 0 0 0

(1 ) (1 ) 0 0 0 0 1 0
1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

T

α α β β
α α β β

β β
β β

α α α α α
α α α

− 
 − 
 −
 − 
 = −
 

− 
 − − −
 

− − − 
 
 

  (17) 

where 2 1 1/ / (1 ), / / 2(1 ) / (1 2 )p sD D D G c cα ν ν β ν ν= = − = = = − − . 
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4 CIP METHOD FOR ADVECTION EQUATION 
CIP method is an effective numerical tool to solve the advection equation with high 

accuracy. For later explanations, we here quote the formulation written by Yabe et al. [3] as 
below:  

“If two values of f  and g  are given at two grid points, the profile between these points 
can be interpolated by cubic polynomial 3 2( )F x as bs cs d= + + + . 



Nagayuki Yoshida 

 6 

Thus, the profile at 1n + -step can be obtained shifting the profile by c t∆  such as
1 ( )nf F s c t+ = − ∆ , 1 ( ) /ng dF s c t ds+ = − ∆ . 

 2 3

2( )i iup i iup
i

g g f f
a

D D
+ −

= +  , (20) 

 2

3( ) 2iup i i iup
i

f f g g
b

D D
− +

= −  , (21) 

 1 3 2n n n
i i i i if a S b S g S f+ = + + +  , (22) 

 1 23 2n n
i i i ig a S b S g+ = + +  , (23) 

where S c t= − ∆ . Hence, D s= −D , 1iup i= −  for 0c ≥  and D s= D , 1iup i= +  for 0c < .” 

5 COMBINED METHOD OF FEM AND CIP 

5.1 Numerical procedure in one dimensional problem 
The boundary of FEM domain has to transmit various waves in order to analyze an infinite 

wave field. To realize this function, the CIP grid is overlapped to the FEM mesh efficiently 
around the boundary. We explain the basic procedure for the problem of one dimensional 
wave field by using an example of shear rod (Figure 1). The subscript R denotes the reflected 
wave from the free end which propagates in the direction of x axis, and the subscript I denotes 
the incident wave from the opposite direction. The superscripts cip and fem show the 
quantities on CIP grids and FEM nodes, respectively. 
 

 
Figure 1: Analytical diagram 

 
 

Two types of numerical procedures are summarized in the following. 
 
(1) Tree Grids for CIP (High accuracy): 

0-1.  Make the time history of 0 0 0 0
3 0

1 1 /
2 2

I I I I
I I s

s s

u u Guf u c
c G c G

τ   ′
= + = + =   

   

 

  

 because 0 0 /I I su u c′ =   .  ( 0Iu : Incident velocity wave).  
0-2. Initialize at all of the incident CIP grids: (0) 0 ( 1,2,3)Iif i= = . 

1            2            3 

1             2              3 

1            2 

Incident CIP 
 

Reflected CIP 
Free end FEM 

① 

② 

③ 

④ 

①’ 

②’ 

N-1           N 
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0-3.  Initialize at all of the reflected CIP grids: (0) 0 ( 1,2,3)Rif i= = . 
0-4.  Set the initial condition at all of FEM nodes ( 1,2, ,i N=  ) 
 : (0) (0) 0fem fem

i iu u= = . 
0-5.  Set the time 0t = .  
 
1.  Input 3( )If t  at the incident CIP grid 3. 

2. ①: Calculate ( )Iif t t+ ∆  at the incident CIP grids: 1, 2i =  by 0I I
s

f fc
t x

∂ ∂
− =

∂ ∂
. 

3. ①’: Evaluate the stress at the incident CIP grid 2 which is subjected to the FEM 
boundary node N  as the external force 

 : 2 2( ) ( )cip
I It t Gf t tt + ∆ = + ∆  

4. ②: Calculate ( )Rif t t+ ∆  at the reflected CIP grids: 2,3i =  by 0R R
s

f fc
t x

∂ ∂
+ =

∂ ∂
. 

5. ②’: Evaluate the stress at the reflected CIP grid 2 which is subjected to the FEM 
boundary node N  as the external force 

 : 2 2( ) ( )cip
R Rt t Gf t tt + ∆ = + ∆  

6. ③: FEM analysis by the linear acceleration method. 
 2 2[ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { ( )} { ( )}fem fem fem cip cip

I RM u t t C u t t K u t t t t t ttt + ∆ + + ∆ + + ∆ = + ∆ + + ∆   
7.  ④: Calculate ( )Rif t t+ ∆  at the reflected CIP grids: 1, 2i = . 

 ( ) ( )1 1( ) ( ) / ( ) / ( ) / ( ) /
2 2

cip cip fem fem
Ri Ri s Ri Ri s Rif t t u t t c t t G u t t c t t Gtt + ∆ = − + ∆ + + ∆ = − + ∆ + + ∆   

  because 2 2( ) ( ) ( ) ( ) ( )cip fem cip fem
Ri N i Ii N i s Iiu t t u t t u t t u t t c f t t− + − ++ ∆ = + ∆ − + ∆ = + ∆ − + ∆    . 

8.  Return  to 1. after setting t t t+ ∆ → . 
 
(2) One Grid for Incident CIP and Two Grids for Reflected CIP (High speed): 
 
0-1.  Make the time history of 2 0 /I I sf u c=   ( 0Iu : Incident velocity wave).  
0-2.  Initialize at the reflected CIP grids: (0) 0 ( 1,2)Rif i= = . 
0-3.  Set the initial condition at all of FEM nodes ( 1,2, ,i N=  ) 
 : (0) (0) 0fem fem

i iu u= = . 
0-4.  Set the time 0t = .  
 
1. ①’: Evaluate the stress at the incident CIP grid 2 which is subjected to the FEM 

boundary node N  as the external force 
 : 2 2( ) ( )cip

I It t Gf t tt + ∆ = + ∆  

2. ②: Calculate 2 ( )Rf t t+ ∆  at the reflected CIP grid 2 by 0R R
s

f fc
t x

∂ ∂
+ =

∂ ∂
. 
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3. ②’: Evaluate the stress at the reflected CIP grid 2 which is subjected to the FEM 
boundary node N  as the external force 

 : 2 2( ) ( )cip
R Rt t Gf t tt + ∆ = + ∆  

4. ③: FEM analysis by the linear acceleration method. 
 2 2[ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { ( )} { ( )}fem fem fem cip cip

I RM u t t C u t t K u t t t t t ttt + ∆ + + ∆ + + ∆ = + ∆ + + ∆   
5.  ④: Calculate ( )Rif t t+ ∆  at the reflected CIP grids: 1, 2i = . 

 ( )1( ) ( ) / ( ) /
2

fem fem
Ri Ri s Rif t t u t t c t t Gt+ ∆ = − + ∆ + + ∆  

6.  Return  to 1. after setting t t t+ ∆ → . 
 

Both of the procedures are also valid when the input motion is expressed as the incident 
acceleration wave. In this case, all of the above equations are differentiated. 

5.2 Application to two and three dimensional problem 
The procedure with one dimension is also used for the two and three dimensional problems 

by combining it with the flow of decomposition analysis explained in the section 3. Figure 2 
shows how to generate the overlapping of FEM mesh and CIP grid in the two dimensional 
field. 

 

 
 

Figure 2: Overlapping of FEM mesh and CIP grid (Infinite space and half one) 
 

6 NUMERICAL EXAMPLES 

6.1 One dimensional field 
The shear rod subjected to a half cycle velocity pulse at the right end, vibrates like Figure 3. 

The rod is divided into 40 elements with a linear interpolation on its displacement.  In this 
paper, small Rayleigh dumping with 1.0% is introduced. Almost perfect transmission at the 
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right end is realized after reflecting at the free end first. 
 

     Free end 

    
 (1)                                      (4) 

   
 (2)  (5) 

   
 (3)  (6) 

 
Figure 3: Shear rod subjected to a velocity pulse at the right end 

 

6.2 Two dimensional field 

The FEM mesh is 18 18×  and the shape of its element is a rectangular with 4 nodes. Figure 
4 shows the time history of the Kelvin problem that the cyclic point loading is applied in an 
infinite space. The boundary side of analytical fields is absorbing the outgoing wave perfectly.  

Next, we show the wave field where SH wave incomes from the downward direction with 
the incident plus angle of 30-degree against vertical axis. In Figure 5, the incident wave of 
one cycle sine function is up-going toward the free surface and reflecting downward with a 
minus angle of the same. 

Farther, in Figure 6 the embedded foundation is placed in soil. The incident wave collides 
with the edge of foundation. The high amplitude appears near the foundation at the free 
surface. Then the reflected wave diffracts around the foundation and dissipates download over 
the analytical boundary. 
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7 CONCLUSIONS 
This paper proposed a new method for the transmitting boundary of the FEM domain 

based on CIP method. Its validity was shown by some numerical examples. In summary:  
1. The transfer matrix [ ]rsT  can be arranged to the same [ ]T , which is a powerful tool to 

convert the advection quantities of some direction to those of other directions. 
2. Two kinds of CIP grid is used at the boundary of the FEM domain of which one is for 

the incident wave and another is for the reflected wave. 
3. The number of nodes on CIP grid is at most two or three for every propagating direction. 
4. The size of the FEM domain can be reduced as possible because the transmitting 

efficiency by CIP method is highly accurate. 
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 (1) (3) 

    
 (2) (4) 
 

Figure 4: Kelvin problem in in-plane field of two dimensional space 
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 (1) (5) 

   
 (2) (6) 

   
 (3) (7) 

   
 (4) (8) 

 
Figure 5: Two dimensional free field of half space subjected to SH wave with incident angle of 30-degree 
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 (1)  (5) 

    
 (2) (6) 

    
 (3) (7) 

    
 (4) (8) 
 

Figure 6: Embedded foundation subjected to SH wave with 30-degree of incident angle 
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