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Abstract. We present a Direct Forcing (DF) approach for simulations of flows over mov-
ing bodies, on Cartesian grids, capable of reducing the amplitude of the force oscillations,
by using a regularized approach.

1 INTRODUCTION

Fluid-structure interaction (FSI) problems are tricky to simulate due to the complexity
of the physical phenomena and the presence of time varying geometries. In the well-known
body-fitted approach the boundary conditions (BC), that are critical for FSI issues, are
exactly imposed on the physical domain boundary. However accurate this approach may
be, it is sometimes difficult to deal with the re-meshing issue, specially for large fluid-
mesh deformations. Another approach consists in using immersed boundary methods
(IBM) [1]. The general idea is to consider only a fluid domain in which the solid bound-
aries are immersed. We recover the immersed BC by adding a supplementary term in the
governing equations of the fluid, referred to as the forcing term. Here, we consider the
Direct Forcing (DF) method [2] that is particular discrete version of the IBM for rigid
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solids. This method has been successfully applied to various problems [3]. Unfortunately,
one undesirable property is the generation of spurious force oscillations (SFO) [4, 5, 6]
when dealing with moving bodies on a fixed computational grid.
Here, we present a Regularized Direct Forcing (RDF) approach [7] for simulations of
flows over moving bodies capable of reducing the amplitude of the SFO. We have identi-
fied the primary source of these oscillations as the temporal discontinuity of the forcing
term across the fluid-solid interface, concerning mainly the dead cells. Indeed, when the
velocity point comes near the solid boundary, the original DF approach consists in forcing
the previously computed fluid velocity to a prescribed one. Therefore the forcing term is
highly discontinuous in time for dead cells leading to the famous spurious force oscilla-
tions. In the proposed RDF approach, this prescribed fluid velocity is chosen in a such a
way that the magnitude of the forcing term tends to zero with the inverse of the distance
to the immersed interface (or with the solid volume fraction). By modifying the definition
of the prescribed fluid velocity, it is possible to change the order of approximation of the
method. A first order and a second order version of the method are presented here.
The results obtained with the present RDF approach are similar to those obtained with
much more complicated method [8, 6, 9]. Moreover our method is very easy to imple-
ment, effective and improve the numerical precision by comparison with the original DF
approach.

2 NUMERICAL METHODS

The governing equations used to describe unsteady incompressible flows are the in-
compressible Navier-Stokes (NS) equations -here with Dirichlet BCs for the sake of the
presentation-:

∂u

∂t
+ ∇ · (u ⊗ u) +

1

ρ
∇p − ν∇2u = g in Ω

∇ · u = 0 in Ω (1)

u = uD on ∂Ω

where Ω is the computational domain, ∂Ω its boundary, u the fluid velocity, ν the kine-
matic viscosity, p the pressure, ρ the fluid density and g bulk forces. A non-incremental
fractional-step scheme is used to solve the governing equations (1) [10, 11].

Following the IBM developed by [2], the computational domain Ω corresponds to a
uniform Eulerian grid including the fluid domain ΩF and the embedded solid domain ΩS

such as Ω = ΩF ∪ ΩS. The presence of embedded time-varying geometry ΩS is taken
into account thanks to a source term F DF , added to the time semi-discretized form of
the Navier-Stokes Eqs. (1). For instance, with an explicit Euler scheme and considering
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a projection solver, this is done in two steps:

u⋆ − un

∆t
+ ∇ · (un

⊗ un) + ∇P n
− ν∇2un = g in Ω, (2)

with u⋆ a predicted velocity without taken into account the immersed boundary Σ. This
step depends on the time scheme. The forcing step is:

ũ = u⋆ + ∆tFDF (3)

where ũ is the predicted velocity that satisfies the IBC and ∆t the time step. Finally, the
projection and the correction steps remain classical:

1

ρ
∆pn+1 =

1

∆t
∇ · ũ in Ω (4)

un+1 = ũ −
∆t

ρ
∇pn+1 in Ω. (5)

The source term F DF is defined by:

F DF = χm

ui − u⋆

∆t
in Ω (6)

where ui is the imposed fluid velocity and χm is the phase indicator function of the imposed
velocity domain Ωm

I :

χm(x) =

{
1 for x ∈ Ωm

I

0 otherwise.
(7)

where x is the position. The imposed fluid velocity can be obtained by interpolations
of various orders from the BC and the fluid velocity. Here we consider interpolations of
order 1 (base model: the imposed velocity is equal to the solid one uD) and of order 2
(linear model: linear interpolation [12]).

The space discretization is based on a finite volume approximation with a staggered
grid arrangement of the variables (u, P ). As a result, the pressure degrees of freedom are
located at the cell centers whereas those of each velocity component are placed at the
middle of the cell edges. The governing Eqs. (1) are integrated over each control volume
ensuring the conservation of mass and momentum balance. The convection and diffusion
terms are respectively approached by the QUICK and centered schemes.

3 ANALYZE OF THE SFO

Let us consider the test case of Seo and Mittal [6] as sandbox. It consists in a circular
cylinder of diameter D oscillating along the x-direction in a fluid at rest:

xc(t) = xc(0) + X0(1 − cos(2πf0t)) (8)

yc(t) = yc(0)
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where (xc(0), yc(0)) are the initial coordinates of the cylinder center, X0 the amplitude of
the oscillations and their frequency f0, see the Fig. 1(a). Fig. 1(b) shows the evolution
over a period T0 of the dimensionless coefficients concerning the pressure drag CP , the
friction drag Cν , the total drag CT and the total contribution of the direct forcing term

CDF =

RRR

ΩS
ρF DF ·exdΩ

F ref ·ex
with F ref a scaling vector and ex the x-direction unit vector.

(a) (b)

Figure 1: Mittal’s test case 1(a) geometry and computational grid. Physical dimensionless coefficients
time histories: CP , Cν , CT and CDF .

Mainly, it is the pressure drag component that is disturbed by the spurious oscillations
whereas the time history of the friction drag is almost regular. Therefore, the SFO are in
fact due to the spurious pressure oscillations (SPO). It is also interesting to notice that
CDF is nearly equal to CT .

Analyzing the SPO origin in the case of the DF base model, we obtain under reasonable
hypothesis [7] that the measure of the DF term variation between the time steps n and
n + 1 can be approached by:

∫

Ωn+1

s,h

F n+1
DF dΩ −

∫

Ωn
s,h

F n
DFdΩ = O(1)

︸ ︷︷ ︸

K∈Ωn+1

s,h
∩Ωn

s,h

+O(∆x) + O(
∆x2

∆t
)

︸ ︷︷ ︸

K∈DC

+O(∆x)
︸ ︷︷ ︸

K∈FC

(9)

= O(1) + O(∆x) + O(
∆x2

∆t
)

where ∆x is the space step, Ωn∗
s,h is the imposed velocity domain at time n∗, the FC

(fresh cells) is the set of velocities that became freshly fluids (K ∈ Ωn
s,h�Ωn+1

s,h ) and DC

(dead cells) the set of velocities that became freshly forced (K ∈ Ωn+1
s,h �Ωn

s,h). This
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equation implies that the SPO decrease with decreasing the grid spacing and increasing
the computational time step. The exponents are in good agreement with [6]. Additional
studies conclude that the DC are the main source of pressure oscillations, cf. Fig. 2 [7].

(a) (b)

Figure 2: Forcing term maximum on the Mittal’s test case. FC and DC numbers on the left and right
sides.

4 REGULARIZED DIRECT FORCING

The classical DF method consists in modeling χm in consistence with a sharp transition
of the forcing term at the forced-free interface, cf. Eq. (7). When a fluid point is reached
by the solid boundary, we shapely jump from a velocity computed by the Navier-Stokes
numerical scheme to a geometrical interpolation. Then the forcing term is highly discon-
tinuous in time for the dead cells.
The key idea of the regularized DF formulation is to smooth this transition by replacing
χm with a smoother function. The following formulation is proposed for the imposed
velocity:

ui = τmum + (1 − τm)u⋆ (10)

with um is the interpolated velocity and τm is a smooth function of the distance to the
immersed boundary Σ. For instance, τm can be the fraction of the forced-domain volume
to the control volume associated with the fluid velocity.
Hence we force the velocity proportionally to τm in order to have a smooth transition: the
fluid velocity will be forced progressively to the forced velocity as it enters in the forced
domain. This formulation does not increase the computational time cost and is very easy
to implement. We named it ”regularized” (R) DF because the imposed velocity is a linear
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combination of the NS computed velocity and the imposed interpolated velocity leading
to a imposed regularized velocity.

For your tests we choose the following model for τm:

ui =







um if τm = 1
τmum + (1 − τm)u⋆ if 0 < τm < 1
u⋆ if τm = 0

(11)

with τm computed thanks to the distance function. It varies linearly with the distance
from 0 to 1 across a layer of thickness ∆x centered on the forced-free interface, see Fig. 3.
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Figure 3: Representation of χm and τm for the classical DF method and the Regularized DF one.

Applying similar analysis than done in Section 3, we now obtain that the measure of
the DF term variation between the time steps n and n + 1 can be approached by:

∫

Ωn+1

s,h

Fn+1
RDF dΩ −

∫

Ωn
s,h

F n
RDF dΩ = O(1) + O(∆t) + O(∆x)

︸ ︷︷ ︸

K∈Ωn+1

s,h
∩Ωn

s,h

+O(∆t) + O(∆x)
︸ ︷︷ ︸

K∈DC

+O(∆t)
︸ ︷︷ ︸

K∈FC

= O(1) + O(∆t) + O(∆x) (12)

Hence, the O(∆x2

∆t
) term of Eq. (9) is reduced to O(∆x).

5 NUMERICAL APPLICATIONS

To demonstrate the effectiveness of the present DF forcing approach, in comparison
with the original one, we restrict ourselves to only two classic moving-body problems from
the literature. More validations examples can be found in [7].
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Figure 4: Time evolution of the pressure drag for an oscillating cylinder, test case from [6], using the
original method and the present method, both with the first order version.

(a) Grid spacing convergence of the oscilla-
tions

(b) Time-step convergence of the oscilla-
tions

Figure 5: Cp2δ

Max
for the base and the linear interpolation schemes for both the DF and RDF formula-

tions. The CFL number is set to 1.

The first test case is again from [6] where we consider an oscillating cylinder in a fluid at
rest. The force oscillations are almost entirely suppressed for this test case, cf Fig. 4.

We used the pressure 2δ-discontinuity C2δ
P [6] to quantitatively describe the SPO:

C2δ
P = Cn+1

P − 2Cn
P + Cn−1

P (13)

7



M. Belliard, M. Chandesris, J. Dumas, Y. Gorsse, D. Jamet and C. Josserand

where n is the time-step index. Space-step and time-step convergence studies of the am-
plitude of the SPO, cf. Fig. 5, conclude to a big damping of the SPO and corroborate the
theoretical analysis.

Concerning the second test case, it consists in one of the numerical experiments con-
ducted by E. Guilmineau and P. Queutey [13]: a circular cylinder with an imposed har-
monic motion in a flow characterized by the Reynolds number Re = UD

ν
= 185. The

imposed sinusoidal motion is defined by:

xc(t) = xc(0) + Aecos(2πfet) (14)

yc(t) = yc(0)

where (xc(0), yc(0)) are the initial coordinates of the cylinder, Ae the amplitude of the
oscillations and fe their frequency. Here we have Ae/D = 0.2 and fe/f0 = 1.1 with D the
diameter and f0 the natural shedding frequency from the stationary cylinder.
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Figure 6: Time history of the drag and lift coefficients over a period of time for the DF linear 6(a) and
the RDF linear 6(b) formulations with a computational domain of L/D = 60 and a grid spacing ratio of
D/∆x = 12.5.

Here again, the present RDF approach decreases the amplitude of the oscillations
by almost one order of magnitude without altering the physics, cf. Fig. 6. Moreover,
in Fig. 7, we qualitatively compare the drag and lift coefficients obtained by the RDF
method equipped with linear interpolations to the Guilmineau results. The agreement is
quite good.
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(a) (b)

Figure 7: Comparison of the drag and lift coefficients over a few periods of time, the picture 7(a) is
comes from the article of E. Guilmineau [13] and 7(b) is the RDF linear formulation with a computational
domain of L/D = 60 and a grid spacing ratio of D/∆x = 25.

6 CONCLUSIONS

The main goal of this paper was to present a new regularized direct forcing (RDF)
approach capable of cutting off the SFO observed in simulations of moving boundary
problems with sharp-interface IBM. The expression of the DF forcing term is carefully
chosen to smooth the fluid temporal discontinuity through the fluid-solid interface, what-
ever is the order of the geometrical interpolation involved. This regularization process is
quite general and can be adapted to the penalized direct forcing [12]. Consequently, it is
possible to control and manage the magnitude of the spurious force oscillation. Moreover,
theoretical analysis were performed to estimate the temporal variation of the forcing term
for both the DF and the RDF methods in order to assess the spatial and time dependen-
cies of the oscillations amplitude.
In order to illustrate the capacities of our method, two test cases were provided. One is
an oscillating cylinder in a fluid at rest [6]. The other one is a cylinder with an imposed
sinusoidal motion subjected to a cross-flow of Reynolds number 185 [13]. Both test case
studies conclude to the drastic reduction of the SFO and the agreement of the spatial and
time dependencies of the oscillations amplitude with our theoretical estimations.
From a general point of view, the RDF approach enables to decrease the spurious oscilla-
tions by at least one order of magnitude over a large range of grid spacing and time-step
without increasing the computational cost. The results obtained in this matter are quite
similar to [6] that used a cut cell method that is much more complicated to implement.
It brings the possibility to accurately simulate full fluid structure interaction problems,
such as flow induced vibration, without parasite fluctuation at the fluid-solid interface.
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