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Abstract. The common knowledge now is that standard least squares Full Waveform In-
version is unable to reconstruct macrovelocity for reasonable frequency band of input data
but claims unpractically low time frequencies. There are a range of different approaches
to overcome this weakness and among them Migration Based Travel Time reformulation
of the cost function. Here we compare standard least squares Full Waveform Inversion
with its Migration Based Travel Time reformulation. Our computations demonstrate the
reliable reconstruction of the smooth velocity component by full waveform inversion in
migration based travel-time formulation.

1 Introduction

Constructing a smooth velocity model (propagator, macro velocity constituent) in the
depth domain, which is responsible for correct travel-times of wave propagation is a key
element of the up-to-date seismic data processing in areas with complex local geology.
Theoretically it could be obtained, along with the subsurface structure, by the Full Wave-
form Inversion (FWI) technique matching the observed and the synthetic seismograms
(Tarantola, 1984). The L2 norm is usually used for this matching, though other criteria
are also considered. To minimize the misfit function and to find the elastic parameters of
the subsurface, iterative gradient-based algorithms are usually applied. Such approach to
solving seismic inverse problem proposed originally by Tarantola (1984) has been devel-
oped and studied in a great number of publications (see Virieux and Operto, 2009, and
the references therein).
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However, the straightforward application of FWI reconstructs reliably only the reflec-
tivity component of the subsurface but fails to provide a smooth velocity (propagator)
component of a model. In order to overcome this trouble G.Chavent with colleagues in-
troduced Full Waveform Inversion in Migration Based Travel-Time formulation (2001).
The main idea of this approach is to decompose model space into two orthogonal sub-
spaces - smooth propagator and rough reflector with subsequent reformulation of the cost
function.

2 Methods

2.1 Statement

Full Waveform Inversion formally is application of non-linear least squares for seismic
inverse problem treated as a nonlinear operator equation

F [m] = d. (1)

Here the known right-hand side d is multi-source multi-receivers seismic data, F is a
non-linear operator (forward map) which transforms the current model m to synthetic
data. For the sake of simplicity we deal with the Helmholtz equation:

∆u+
ω2

c(x)2
u = f(ω)δ(x− xs)

with data d being its solution computed at receivers positions.
Instead of regular non-linear least squares formulation of Full Waveform Inversion,

when unknown function c(x) is searched as

c∗ = argmin
c

‖d−F(c)‖2, (2)

MBTT introduces the following decomposition of the model space:

m = p+ r = p+ΠrM(p) < s > . (3)

Here p ∈ P describes smooth macrovelocity, which does not perturb significantly di-
rection of waves propagation, but governs their travel times. In contrast the depth

reflector r describes rough perturbations of the model, which send seismic energy back
to the surface, but do not change travel-times. The key moment here is interrelation
r = ΠrM(p) < s > where s is unknown time reflectivity, M(p) - a true amplitude
prestack migration operator with linear reweighing W and Πr is the orthogonal projector
onto the space of reflectors (orthogonal to the space of propagators). In more details this
operator is written down as

M(p) < s >= W ◦Re

{(
δF

δm
(p)

)
∗

< s >

}
, (4)
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where ∗ denotes adjoint operator in application to Frechet derivative of nonlinear forward
map F .

In this notations MBTT formulation of FWI with respect to propagator p and time
reflectivity s is as follows:

(p∗, s∗) = argmin
p,s

‖d−F(p+ΠrM(p) < s >)‖ (5)

2.2 Non-linear inversion with respect to propagator unknown

Consider the modified objective function Ẽ(p; s):

Ẽ(p; s) = ‖d−F(p+ΠrM(p) < s >)‖ (6)

One can show that the gradient ∇pẼ(p; s) is as follows:

∇p = Re

{(
δF

δm
(m)

)
∗ [
F (m)− dobs

]
+ (7)

δ2F

δm2
(p)

[
· ,W ∗ ◦

(
δF

δm
(m)

)
∗ [
F (m)− dobs

]]∗
[s]

}

where m = p+ΠrM(p) < s >.

Application of the conjugate gradient (CG) method for minimizing of Ẽ(p; s) with
respect to a propagator unknown gives the following iteration process:

pk+1 = pk + µkSk (8)

where pk - propagator on each step, µk ∈ R is a step length of the propagator update and
the Sk is a direction of the propagator update of the following form:

Sk = −∇k −
〈∇k,∇k −∇k−1〉M
〈∇k−1,∇k−1〉M

Sk−1, (9)

where ∇k = ∇Ẽ(pk; s). Using second order approximation to the objective function the
step length of propagator update can be found as:

µk = −
〈∇k, Sk〉M

〈Lk < Sk >,Lk < Sk >〉D
, (10)

where Lk is a Freche’t derivative with respect to p of the modified forward map calculated
at the point (pk; s):

Lk =
δ

δp
F(pk +ΠrM(pk) < s >) (11)
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2.3 Non-linear inversion with respect to time-reflectivity unknown

In order to implement the full cycle of MBTT inversion one also need minimize the
modified objective function Ẽ(p; s) with respect to the time-reflectivity unknown. The

gradient ∇sẼ(p; s) can be found as follows:

∇s = −
δF

δm
(p)

[
W ∗ ◦

δF

δm

∗

(m)
〈
dobs − F (m)

〉]
. (12)

Application of the steepest descent method for minimizing of Ẽ(p; s) with respect to a
time-reflectivity unknown gives the following iteration process:

sk+1 = sk − µk∇sk , (13)

where sk - time-reflectivity on each step, µk ∈ R is a step length of the time-reflectivity
update. The choice of the step length µk in (13) is crucial for the convergence of the
steepest gradient optimization method. For three test step lengths 0 , α1 and α2 three
values of objective function are calculated

E0 = Ẽ(p; sk),

E1 = Ẽ(p; sk − α1∇sk),

E2 = Ẽ(p; sk − α2∇sk).

(14)

Assume that locally around sk the true misfit function can be approximated by fitting
a parabola through the three points {0, α1, α2}:

Ẽ(p; sk − α∇sk) = aα2 + bα + c, (15)

then we have the following SLAE for (a, b, c):

c =E0,

aα2
1 + bα1 + c =E1,

aα2
2 + bα2 + c =E2.

(16)

Finally the optimal step on k − th iteration:

µk = −
b

2a
. (17)

3 Numerical experiments

Consider the layered velocity model mtrue presented on Fig. 1. The initial guess m0 is
constant up to the depth 100 m and a linear function (with respect to the depth) starting
from 100 m up to the depth 1500 m:

m0(x, z) =

{
3000 m/s, if z ≤ 100
3
14
(z − 100) + 3000 m/s, if z > 100

(18)
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Figure 1: True velocity distribution mtrue.

The acquisition system contains 25 volumetric point-sources and 99 receivers placed
evenly on the top of the model.The frequency band of input data consists of 207 frequencies
placed evenly in the segment [7, 40] Hz and the source impulse - Ricker wavelet with
dominant frequency 15 Hz.

Let us start from the classical L2 inversion providing we use m0 as a start model for
non-linear iterations via CG method. The inversion results (Fig. 2) demonstrate the main
weaknesses of the standard inversion approach: local minima of the objective functional
and slow convergence. As one can see the macrovelocity component of the solution is
not recovered. Instead of smooth component, mainly the reflectors are presented in the
solution, but if for the top layers the interfaces appear on the correct places then for the
deeper layers the interfaces are recovered on the wrong positions (the last interface is
recovered with error 200 m).

We propose the minimization scheme presented on Fig. 3 as a minimization algorithm
for inversion in MBTT formulation. On first stage we update the time-reflectivity, then
on the second stage - propagator. Then we repeat the loop again. The results of MBTT
inversion are presented on Fig. 4

Since recovered full model is very close to the true solution we suggest to run stardard
L2 inversion using recovered on MBTT stage model as a start model. Results of such
experiment are presented on Fig. 5. On Fig. 6 we present time-domain data residuals
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Figure 2: Classical inversion results. Red plot - recovered model on current iteration, black plot - true

model.

for models obtained after CLS inversion but for different initial guesses: in the first case
we use m0 and in the second case - model recovered after MBTT inversion. One may
recognize almost perfect reconstruction of full model, when we apply standard inversion
technique after MBTT inversion and as a result we have the better data explanation
(time-domain data residuals are smaller when we use MBTT before classical inversion).

The last experiment - sequential classical single frequency inversion. Starting single
frequency inversion from 5Hz we use the model recovered on 5Hz as a start model for 6Hz
inversion and so on up to the 10Hz. The following set of frequencies were used during
inversion: 5Hz, 6Hz, 7Hz and 10Hz. The results of sequential inversion are presented on
Fig. 7.

4 Conclusions

We introduced MBTT formulation in frequency domain. In case of MBTT formulation
the low-frequency components of the solution are presented in recovered models, as op-
posed to the standard L2 approach. Presented numerical examples prove the feasibility of
MBTT technique for recovering the smooth component of the solution in case of absence
low frequencies in the observed data (lower frequency 7Hz).

The computations were performed on the HERMIT supercomputer of the High Per-
formance Computing Center Stuttgart under the PRACE consortium grant 2012071274.
The research was done under financial support of the Russian Foundation for Basic Re-
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Figure 3: MBTT minimization algorithm.
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Figure 4: MBTT inversion results. Red plot - recovered model on current stage, black plot - true model.

Figure 5: Classical inversion using model obtained after MBTT inversion as initial guess
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Figure 6: Time-domain data residuals. Left - classical inversion after MBTT, right - classical inversion.

Figure 7: Sequential classical inversion starting from 5Hz.
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