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Abstract. In order to simulate complex deformation of liquid with free surface, Koshizuka et
al. proposed the Moving Particle Semi-implicit method (MPS). MPS is applied to make 3DCG
animations about splashing waters, breaking waves, and so on. MPS computes the liquid’s pres-
sures by solving the Poisson equation with the feedback for mass density. This pressure Poisson
equation is derived from the equation of continuity by assuming the flow’s incompressibility.
Although MPS computes the incompressible flows, compressibility is considered in the com-
puting process. By considering this compressibility, the pressure Poisson equation is modified
to the one with the feedback for the mass density and the divergence of the flow’s velocity.

1 Introduction

In order to simulate complex deformation of liquid with free surface, Seiichi Koshizuka et al.
proposed the Moving Particle Semi-implicit method (MPS) [1]. MPS is applied to make 3DCG
animations about splashing waters, breaking waves, and so on. MPS simulates the incompress-
ible flow of the liquid. MPS constructs the spatial differences by the particles at each time and
discretize the Navier-Stokes equation spatially. In the time evolution scheme of MPS, pressures
are computed as a solution of the Poisson type partial differential equation ( the pressure Poisson
equation ).

Although the positions and the velocities of the liquid were computed suitably by MPS
method, the computed pressures oscillate numerically. This is so-called the pressure oscilla-
tion problem of the MPS method [2] [3] [4],

In order to avoid this problem, i.e., in order to stabilize the pressures which is computed by
MPS, Yoshimasa MINAMI improved the source term of the pressure Poisson equation heuris-
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tically [3]. He modified the pressure Poisson equation to the one with the feedback by the mass
density and the divergence of the flow’s velocity. In this paper, the author explain the mathemat-
ical meaning of that improvement. He derives the pressure Poisson equation with the feedback
by the mass density and the divergence of the flow’s velocity.

Although MPS is proposed to compute incompressible flow [1], compressibility is consid-
ered in its computation process between the present times and the next timet = s+ ∆s.
In such compressible process, mass density varies as the time goes on. Considering the time
varying mass density, the authors derived the pressure Poisson equation (59) with the feedback
by the mass density and the divergence of the flow’s velocity mathematically. This derivation
guarantees the heuristic computation proposed by [3] theoretically.

In traditional hydrodynamics, the boundary condition of that Poisson type partial differential
equation must be non-homogeneous. By the mathematical theory of partial differential equa-
tions, a non-homogeneous boundary condition of a partial differential equation is transformed
to a source term of the partial differential equation. Thus we can compute the solution of the
Poisson type partial differential equation based on a homogeneous boundary condition [5] [6].

2 Lagrangian material coordinate based on Fluid’s particles

We simulate the deformation of liquid based on the Lagrangian material coordinate.
Let Dim be the dimension of the space. Thus

Dim = 2 , 3 (1)

If a fluid particle whose position isx = (x1, x2, · · · , xDim) ∈ RDim at times> 0 reaches to the
positionz = (z1, z2, · · · , zDim) ∈ RDim at timet > s by the flow, then we write

z= u(t/s, x). (2)

Let

v(t, z/s, x) = v(t/s, x) = v(t, z) (3)

be the velocity of this particle whose position isx at times and which reaches to the positionz
at timet by the flow.
Let

a(t, z/s, x) = a(t/s, x) = a(t, z) (4)

be the acceleration of this particle whose position isx at timesand which reaches to the position
z at timet by the flow.
Here

the position u = (u1, u2, · · · , uDim) ∈ RDim (5)

the velocity v = (v1, v2, · · · , vDim) ∈ RDim (6)

the accelerationa = (a1,a2, · · · , aDim) ∈ RDim (7)
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Let

ρ(t, z/s, x) = ρ(t/s, x) = ρ(t, z) (8)

be the mass density around this particle whose position isx at times and which reaches to the
positionz at timet by the flow.
Let

p(t, z/s, x) = p(t/s, x) = p(t, z) (9)

be the pressure around this particle whose position isx at time s and which reaches to the
positionz at timet by the flow.

Let Ω(s) ⊂ RDim be the shape of the liquid at times > 0. Of coursex ∈ Ω(s). The liquid’s
shapeΩ(s) changes to the shapeΩ(t) ⊂ RDim at timet > s. Of coursez ∈ Ω(t).
Ω(0) means the initial shape of the liquid at initial time 0. The particle’s positionξ =

(ξ1, ξ2, · · · , ξDim) ∈ Ω(0) at initial time 0 represents the fluid particle, id est, each particle’s
positionz at timet can be expressed by

z= u(t/0, ξ) (10)

for some particle’s positionξ ∈ Ω(0) at initial time 0. For the initial positionξ of the particle
at initial time 0,

u(0/0, ξ) = ξ (11)

follows.
The mass densityρ(t, z/s, x) depends the volume expansion as

ρ(t, z/s, x) = ρ0

{
det

(
∂u(t/s, x)
∂x

)}−1

= ρ0

{
det

(
∂z
∂x

)}−1

(12)

whereρ0 is the initial mass density at initial time 0.

3 The Navier-Stokes equation (Lagrangian type)

We simulate the liquid’s deformation dynamics based on the Navier-Stokes equation

z = u(t/s, x) (13)
D u(t/s, x)

Dt
= v(t/s, x) (14)

a(t/s, x) =
D v(t/s, x)

Dt
=

µ

ρ(t/s, x)

Dim∑
i=1

∂2v(t, z/s, x)
∂zi

2
− 1
ρ(t/s, x)

∂p(t/s, x)
∂z

+ g (15)

and the continuity equation

0 =
D ρ(t, z/s, x)

Dt
+ ρ(t, z/s, x)

Dim∑
i=1

∂vi(t, z/s, x)
∂zi

(16)
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by the mass conservation. Hereg =
(
0, · · · ,0,−9.81[m/s2]

)
denotes the gravity acceleration.

Since the velocityv, the positionu, and the mass densityρ are expressed by Lagrangian
coordinate (s, x), D/Dt denotes the Lagrangian time derivative. By letting

t = s+ ∆s (17)

we can think that [
D u(t/s, x)

Dt

]
t=s

= lim∆s→0
z− x
∆s

(18)

a(s, x/s, x) =

[
D v(t, z/s, x)

Dt

]
t=s

= lim∆s→0
v(t, z/s, x) − v(s, x/s, x)

∆s
(19)

= lim∆s→0
v(t, z) − v(s, x)

∆s
(20)

and [
D ρ(t, z/s, x)

Dt

]
t=s

= lim∆s→0
ρ(t, z/s, x) − ρ(s, x/s, x)

∆s
(21)

= lim∆s→0
ρ(t, z) − ρ(s, x)

∆s
(22)

Although the Lagrangian coordinate (s, x) is not used in [1], this paper describes equations
based on (s, x) for mathematical clarity.

The boundary conditions for the positionu and the velocityv are defined by

v(t/0, ξ) = 0 (23)

u(t/0, ξ) = ξ (24)

ρ(t/0, ξ) = ρ0 (25)

for

ξ ∈ ∂Ω(0) and ξ belongs to the solid wall. (26)

The particleξ in the solid wall is regarded as fluid particlesξ whose velocities are zero(v(t/0, ξ) = 0)
and whose positions do not change(u(t/0, ξ) = ξ) as the timet goes on.

The boundary conditions for the pressurep at the solid wall is defined by

∂p
∂σ

(t/0, ξ) = 0 (27)

for

ξ ∈ ∂Ω(0) and ξ belongs to the solid wall (28)
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whereσ(ξ) is an inner normal vector of the wall at the solid particleξ ∈ Ξsolid. The effect of the
gravity is expressed by the source term of the pressure Poisson partial differential equation, as
we see in the section 5.4.

The boundary conditions for the pressurep at the free surface ( the liquid which comes in
contact with the atmosphere ) is defined by

p (t/0, ξ) = 0 (29)

for

ξ ∈ ∂Ω(0) and ξ belongs to the free surface. (30)

Figure 1: Spatial discretization by many particles.

4 Spatial discretization by Moving Particles

For l = 1,2, · · · , L , let ξ[l] be a representative initial position in the initial shapeΩ(0) of
the liquid at initial time 0. Lagrangian material variables are discretized by many particles
ξ[l] (l = 1, 2,3, · · · , L = 10000) . The positionu(t/0, ξ) (ξ ∈ Ω(0)) is discretized as
u(t/0, ξ[l]) (l = 1,2, · · · , L). The velocityv(t/0, ξ) (ξ ∈ Ω(0)) is discretized asv(t/0, ξ[l]) (l =
1,2, · · · , L). The Navier-Stokes equations (15), (14) and the the equation (16) of continuity are
discretized spatially by the Moving Particle Semi-implicit method ( MPS ) [1].
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Figure 2: A numerical simulation by many fluid particles.

5 Time evolution scheme of the Moving Particle Semi-implicit method

If we observe the liquid’s flow based on the macroscopic view point, it is regarded to be
incompressible. Then we assume that

1 = det

(
∂u(t/s, x)
∂x

)
= det

(
∂z
∂x

)
(31)

and the mass densityρ(t/s, x) become a constantρ0

ρ(t/s, x) = ρ0 (32)

for timest > s≥ 0.

5.1 Time discretization to compute positionz= u(s+ ∆s) and velocityv(s+ ∆s, z)

By letting the equation (17), we obtain the approximating equation

z− x
∆s

= v(s/s, x) = v(s, x) (33)

based on the equation (18) and the approximating equation

v(s+ ∆s, z) − v(s, x)
∆s

=
µ

ρ(s, x)

Dim∑
i=1

∂2v(s, x)
∂xi

2
− 1
ρ(s+ ∆s, z)

∂p(s+ ∆s, z)
∂z

+ g (34)

based on the equations (20) and (15). The time discretization of the discrete time Navier-Stokes
equation (34) is explicit for the valocityv and implicit for the pressurep.
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5.2 The Poisson equation which computes the pressurep(s+∆s, z) at next time t = s+∆s

In the original MPS proposed by Koshizuka et al. [1], the pressure at next time is com-
puted by the Poisson type partial deferential equation( pressure Poisson equation ). We derive
this pressure Poisson partial deferential equation by considering the intermediate compressible
procedure between the present timesand the next timet = s+ ∆s.

The temporal velocityv(tmp)(s + ∆s, y/s, x) = v(tmp)(s + ∆s, y) at next timet = s + ∆s is
computed only by the viscosity term and the gravity term, ignoring the pressure term as

v(tmp)(s+ ∆s, y) − v(s, x)

∆s
=

µ

ρ(s, x)

Dim∑
j=1

∂2v(s, x)
∂x j

2
+ g (35)

Here the temporal positiony = u(tmp)(t/s, x) at next timet = s + ∆s is computed from the
temporal velocityv(tmp)(s+ ∆s, z) as

y− x
∆s

=
u(tmp)(t/s, x) − x

∆s
= v(tmp)(s+ ∆s, y) (36)

By considering the difference between the discrete time Navier-Stokes equation (34) and the
equation(35), in order to recover the effect of pressurep(s+ ∆s, z) (unknown) to the equation
(35), we consider the modifiersv′ , y′ and the temporal mass densityρ(tmp)(s+ ∆s, y as

v(t, z) = v(tmp)(s+ ∆s, y) + v′ (37)

z = y+ y′ (38)

where

v′

∆s
=

−1
ρ(s+ ∆s, z)

∂p(s+ ∆s, z)
∂z

(39)

y′

∆t
= v′ (40)

ρ(tmp)(s+ ∆s, y) = ρ0

{
det

(
∂u(tmp)(s+ ∆s/s, x)

∂x

)}−1

= ρ0

{
det

(
∂y
∂x

)}−1

(41)

By adding the equation (35) and the equation (39), we obtain the discrete time Navier-Stokes
equation (34) for velocity. By adding the equation (36) and the equation (40), we obtain the
discrete time Navier-Stokes equation (33) for position.

By the equation (39), we have

(−∆s)
∂p(s+ ∆s, z)
∂zj

= ρ(s+ ∆s, z) v′ j (42)

for j = 1,2, · · · ,Dim. Assuming the flow’s incompressibility leads to

(−∆s)
∂p(s+ ∆s, z)
∂zj

= ρ0 v′ j (43)
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By differentiating both sides of the above equation with respect tozj, we have

(−∆s)
∂2p(s+ ∆s, z)
∂zj

2
= ρ0

∂v′ j
∂zj

(44)

By adding both sides of the above equation withj = 1,2, · · · ,Dim, we obtain

(−∆s)
Dim∑
j=1

∂2p(s+ ∆s, z)
∂zj

2
= ρ0

Dim∑
j=1

∂v′ j
∂zj

(45)

By considering the mass conservation from (s, x) to (s+ ∆s, z), the discrete time equation of
continuity becomes

0 =
Dρ
Dt
+ ρ

Dim∑
j=1

∂vj

∂zj
=
ρ(s+ ∆s, z) − ρ(s, x)

∆s
+ ρ(s+ ∆s, z)

Dim∑
j=1

∂vj(s+ ∆s, z)

∂zj
(46)

=
ρ(s+ ∆s, z) − ρ(tmp)(s+ ∆s, y)

∆s
+
ρ(tmp)(s+ ∆s, y) − ρ(s, x)

∆s
(47)

+ ρ(s+ ∆s, z)
Dim∑
j=1

∂v(tmp) j(s+ ∆s, y)

∂zj
+ ρ(s+ ∆s, z)

Dim∑
j=1

∂v′ j
∂zj

By considering the mass conservation from (s, x) to (s+ ∆s, y), the discrete time equation of
continuity becomes

0 =
ρ(tmp)(s+ ∆s, y) − ρ(s, x)

∆s
+ ρ(tmp)(s+ ∆s, y)

Dim∑
j=1

∂v(tmp) j(s+ ∆s, y)

∂y j
(48)

By taking the difference between the equation (47) and (48), we obtain

0 =
ρ(s+ ∆s, z) − ρ(tmp)(s+ ∆s, y)

∆s
(49)

+ ρ(s+ ∆s, z)
Dim∑
j=1

∂v(tmp) j(s+ ∆s, y)

∂zj
− ρ(tmp)(s+ ∆s, y)

Dim∑
j=1

∂v(tmp) j(s+ ∆s, y)

∂yj

+ ρ(s+ ∆s, z)
Dim∑
j=1

∂v′ j
∂zj

For the 2nd term of the right hand side of the above equation

∂v(tmp) j(s+ ∆s, y)

∂zj
=

Dim∑
k=1

∂v(tmp) j(s+ ∆s, y)

∂yk

∂yk

∂zj
=

Dim∑
k=1

∂v(tmp) j(s+ ∆s, y)

∂yk
δk j =

∂v(tmp) j(s+ ∆s, y)

∂yj
(50)
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since

∂zj

∂yk
=
∂yj

∂yk
+
∂y′ j
∂yk

' δ jk (51)

∂

∂z
' ∂
∂y

(52)

Thus, the equation (49) leads to

0 =
ρ(s+ ∆s, z) − ρ(tmp)(s+ ∆s, y)

∆s
(53)

+
[
ρ(s+ ∆s, z) − ρ(tmp)(s+ ∆s, y)

] Dim∑
j=1

∂v(tmp) j(s+ ∆s, y)

∂yj

+ ρ(s+ ∆s, z)
Dim∑
j=1

∂v′ j
∂zj

(54)

By considering the flow’s incompressibility, we obtain

0 =
ρ0 − ρ(tmp)(s+ ∆s, y)

∆s
+

[
ρ0 − ρ(tmp)(s+ ∆s, y)

] Dim∑
j=1

∂v(tmp) j(s+ ∆s, y)

∂yj
+ ρ0

Dim∑
j=1

∂v′ j
∂zj

(55)

Substituting this equation (55) to the equation (45), we obtain

(−∆s)
Dim∑
j=1

∂2p(s+ ∆s, z)
∂zj

2
= ρ0

Dim∑
j=1

∂v′ j
∂zj

= (56)

(−1)
ρ0 − ρ(tmp)(s+ ∆s, y)

∆s
+ (−1)

[
ρ0 − ρ(tmp)(s+ ∆s, y)

] Dim∑
j=1

∂v(tmp) j(s+ ∆s, y)

∂yj
(57)

This leads to the following Poisson type partial differential equation

Dim∑
j=1

∂2p(s+ ∆s, z)
∂zj

2
=
ρ0 − ρ(tmp)(s+ ∆s, y)

∆s2
+
ρ0 − ρ(tmp)(s+ ∆s, y)

∆s

Dim∑
j=1

∂v(tmp) j(s+ ∆s, y)

∂yj
(58)

Since the next positionz is unknown unfortunately, we cannot compute the pressurep from
the above partial differential equation. By adopting the approximation (52) for spatial derivative,
we obtain the solvable pressure Poisson partial differential equation

Dim∑
j=1

∂2p(s+ ∆s, z)
∂yj

2
=
ρ0 − ρ(tmp)(s+ ∆s, y)

∆s2
+
ρ0 − ρ(tmp)(s+ ∆s, y)

∆s

Dim∑
j=1

∂v(tmp) j(s+ ∆s, y)

∂yj
(59)

By solving this pressure Poisson equation (59) with the boundary condition determined by the
liquid’s shapeΩ(s+ ∆s) , we can compute ( estimate ) the pressurep(s+ ∆s, z) at next time
t = s+ ∆s.
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5.3 The boundary condition of the pressure Poisson equation

We will improve the description about the boundary condition of the pressurep as follows.
Let σ(ξ) = (σ1(ξ), σ2(ξ), σ3(ξ)) be an inner normal vector of the boundary solid wall at the
positionξ = (ξ1, ξ2, ξ3) . By considering the inner product between the both sides of the Navier-
Stokes equation and the inner normal vectorσ(ξ) , we obtain the non-homogeneous Neumann
boundary condition

1
ρ0

∂p
∂σ
= σ · g (60)

for pressure which is explained in traditional hydrodynamics.
For example, let

Ωliquid =
{
r = (r1, r2, r3) ∈ R3 ; r3 > 0

}
(61)

Ωsolid =
{
r = (r1, r2, r3) ∈ R3 ; r3 < 0

}
(62)

be the domain of the liquid and the domain of the solid, respectively. The boundary∂Ωliquid of
the liquid domainΩliquid becomes

∂Ωliquid =
{
r = (r1, r2, r3) ∈ R3 ; r3 = 0

}
. (63)

Considering the normal vectorσ = (0,0,1) of the boundary∂Ωliquid, the boundary condition
(60) becomes

1
ρ0

∂p
∂u3
=

{
gz if u ∈ ∂Ωliquid

0 if u ∈ Ωsolid
(64)

Thus we obtain

1
ρ0

∂2p
∂u3

2
= δ(u3) (65)

whereδ(·) is the Dirac’s delta function.
In this way, the non-homogeneous boundary condition (60) of the pressure Poisson equation

is transformed to the source term of the pressure Poisson equation.

6 Conclusion

We derived the time evolution scheme of the Moving Particle Semi-implicit method (MPS)
by considering the compressible flow in the computation process and analyzed the boundary
condition of the pressure Poisson equation( the Poisson type partial differential equation ).

We modified the Poisson type partial differential equation which gives the pressure based on
our previous research [6]. The Poisson type partial differential equation is modified to the one
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with feedback for the mass density and the divergence of the flow’s velocity. This modification
guarantees the heuristic computation proposed by [3] theoretically.

Since the non-homogeneous boundary condition of the Poisson type partial differential equa-
tion is transformed to the feedback term( source term of the equation ), we can compute the
solution of the Poisson type partial differential equation based on the homogeneous boundary
condition.
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