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Abstract. Multi-scale computer simulation approach has been applied to research mechanisms of 
failure in ceramic nanocomposites under dynamic loading. Damage nucleation and accumulation 
in quasi-brittle ceramics nanocomposites under impact loadings were simulated. The probability 
of fracture was estimated for ZrO2 − ZrB2, and ZrO2 − ZrB2 − B4C nanocomposites under pulse 
loadings of microsecond duration. The computational models of a structured representative 
volume (RVE) of ceramic nanocomposites were developed using the data of structure researches 
on meso-, micro -, and nanoscale levels. The critical fracture stress on meso-scale level depends 
not only on relative volumes of voids and inclusions, but also on the parameters of inclusion 
clusters. Damage of nano-composites can be formed under stress pulse amplitude of less than the 
Hugoniot elastic limit of matrix. The Hugoniot elastic limit of ceramic nanocomposites decreases 
with increasing the volume concentration clusters of nano-voids. The spall stress of ceramic 
nanocomposites depends on relative volumes and sizes of voids and inclusions. The shear strength 
decreasing can be caused by nano-voids near triple junctions of ceramics matrix grains and 
ultrafine-grained ceramics. 

1 INTRODUCTION 
Influence of mesoscale structure on mechanical properties of ceramic nanocomposites is 
investigated by experimental and computer simulation approaches [1-4]. The first challenge in 
ceramic nanocomposites design is to enhance the strength and fracture toughness [5]. 
Dynamic strength and fatigue life analysis require an understanding of mechanical behavior 
of nanomaterials under pulse loadings. Mechanical behavior of nanoceramics under wide 
range of loading conditions differs from that observed for coarse grained counterparts. A 
particular feature of ceramic nanocomposites is quasi-brittle fracture behavior in range of low 
homologous temperatures. The quasi-brittle fracture of nanocomposites is reported in [6]. For 
instance, particular attention is given to development of new ZrO2 − ZrB2 and ZrO2 − ZrB2 − 
B4C nanocomposites [1-2].  It should be noted, that coarse grained composites of this class 
exhibit brittle behavior. When developing nanocomposites on the base of boride, oxide, 
carbide ceramic compounds, it’s assumed that new materials will exhibit the enhanced 
fracture toughness.  
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Computer simulation methods on the base of the finite element method (FEM) [7], the 
discrete element methods (DEM) [8], and molecular dynamics methods (MD) [9] are used for 
investigation on mechanical behavior of new ceramic nanocomposites. Authors of [10] 
proposed to use the nanostructure modeling approach for understanding the mechanical 
behavior of nanocomposites.  

Framework of this approach contains multiscale model in which material is considered as a 
system of structured elements (such as grains, particles, fibers etc.) at nano-scale level and 
continuum media embodying averaged parameters of the mechanical state at macro-scale. 
Average Parameters of the mechanical state at macro-scale level are defined by 
homogenization in RVE. In present study, this approach was used to develop a two-scale 
model.  

It’s known, that morphological parameters of structure elements, as well as parameters of 
strengthening particle agglomerates and void clusters influence on mechanical properties of 
nanocomposites subjected to quasi-static loading conditions [5-10]. Researches on mechanical 
behavior of ceramic nanocomposites under dynamic loadings have not been widely presented 
in literature [11,12]. The aim of present study is development of a multiscale computer model 
of damage and fracture processes taking place in ZrO2 − ZrB2, and ZrO2 −  B4C ceramic 
nanocomposites under wide range of loading conditions.  

 
2 MODEL OF MECHANICAL BEHAVIOR OF NANOCOMPOSITES. 

 
Multi-scale computer simulation approach has been applied to research mechanisms of 

failure in ceramic nanocomposites subjected to dynamic loading. Response of 
nanocomposites to pulse loadings was estimated using results of RVE mechanical response of 
simulation with given phase concentrations and morphological parameters of matrix grains 
and strengthening inclusions. Model RVE of nanocomposites was developed using the data of 
micro-structural researches on some experimental specimens.  

Within the present approach, computational RVE model include structure volume model. 
Throughout the modeling, the RVE size is established such that it contains a lower possible 
number of interacted structural elements of a lower-scale level providing equal values of 
statistically averaged physical-mechanical property parameters. It should be noted, that 
geometrical size of model RVE depends not only on a structure of material but also on 
loading conditions. This is provided by possibility that collective effect occur and result in the 
formation of block fragmented structure, micro-crack deflections etc. at mesoscale level. To 
describe the mechanical response of solid phases, the continuum approach is used. Continuum 
mechanics approach is appropriate for describing the deformation and damage processes on 
mesoscale level, if the size of structural elements lm (grain size of matrix, grain size of 
reinforced particles) is greater than 50 nm. Also, size of material particles of continuum media 
have to satisfy the criterion of lm >> 50 nm. 

Characteristic sizes of RVE were set to 2.4-24 μm depending on a reinforced particles size 
and matrix grains size. The reinforced particles size and quantity were matched to meet a 
concentration condition of the RVE. In the model RVE, strengthening particles had a 
rectangular shape. Fig.1 shows the structured RVE and the scheme of boundary conditions 
corresponding to pulse loading of RVE nanocomposites. 
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Fig.1. Meso-structure of model representative volume, boundary condition. 

 
Mechanical state of structural elements of nanocomposites (grains of matrix, strengthening 

particles, grain boundaries phase) is described by meso-scale mechanical parameters.  
 

1( , ) ( , ) n k k kx t F x t x Г , k=1,2,3 , 

2 2 3( , ) 0, , .  k k ku x t x Г x Г  3 6 7( , ) 0, ,  k k ku x t x Г x Г . 

4 4[ ] , n Г kp u C x Г  . 

 
Here xk are the Cartesian coordinates, ρ is the mass density in vicinity of boundary, un is the 
normal velocity of material particle, parameter C is decreasing from longitudinal sound 
velocity Cl in the elastic precursor to the bulk sound velocity BC , ( , )kF x t  is a function for 
assigning a pulse shape and duration. Contact conditions are applied on the matrix-reinforced 
particle boundary Г5. 

Components of local strain rate tensor are defined by Stocks relation: 
 

1

2ij j i
i j

( u u )         (1) 

 
where 

ij are components of the strain rate tensor, ui are components of particles velocity, 
i
 is 

Hamilton operator, the substantial time derivative is denoted via dot notation. 
Dynamics of structured RVE is described in Lagrange coordinate system by conservation 

equations of mass, momentum, and energy: 
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where σij are components of micro stress tensor, ρ is the mass density, ui are components of 
displacement vector, εij are components of strain rate tensor, E is the local specific internal 
energy per unit mass.  

The strain rate tensor is expressed by sum of elastic and inelastic parts: 
e p

ij ij ij     .     (3) 

 
Components of the stress tensor are expressed by formula: 
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ij ij ijp S     ,                                                   (4) 

 
where σij are components of stress tensor, p is the pressure, Sij are components of stress 
deviator. 
 

Equation of state was used in polynomial form for pressures up to 10 GPa: 
 
                                              2 3

1 2 3 0p K K K E         for compression  ( 0  ), 

 (5) 
                                             1p K                                             for tension   ( 0  ), 

 
where K1, K2, K3 are material constants, 0( / ) 1     , Г is the Grüneisen parameter. 
The nano-cracks nucleation in a condensed ceramic phase was taken into consideration. 

The shear cracks nucleation reduces the shear strength of ceramic phase particles under 
compression. The damage parameter D is introduced to account for a decrease in the shear 
strength [4,13]:  
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where 
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( )
3

p p p
eq ij ij      ,  f is strain under which fragmentation occurs.  

The parameter D is equal to 0 when material is undamaged. Local failure in a point of the 
condensed phase occurs when D =1. The deviator effective stress tensor of damaged media is 
defined by relation: 
 

(1 )[ ]ij ij cS D S  ,     (7) 

 
where [ ]ij cS  are components of stress tensor of condensed phase. 

Threshold of effective strain f  is approximated by relation [13]: 

 
2

1
D

f D ( P* T*)   ,     (9) 

 
where T*=σsp/PHEL , P*=p/PHEL,  PHEL is the pressure corresponding to the Hugoniot Elastic Limit, 
D1,D2 are material constants.  
Deviator stress tensor is defined using the Drucker-Prager model: 
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where   is the shear modulus, 1 2ik k i
i k

( / )( u u )    .  
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where σs is a material constant, 1/1 [ ]eq s
     is the normalized value of equivalent strain rate 

tensor,   is a model parameter. 
Model parameters are listed in Table 1.  

Table 1: Parameters used for the computation 

Parameters ZrB2 ZrO2 B4C 
ρ (kg/m3) 6.29 103 6.05 103 2.52 103 
K1(GPa) 219.0 C33 263.0 
K2(GPa) 0 C43 480.0 
K3(GPa) 0 C53 659.0 
μ(GPa) 212 76 189 

Γ 1. 1. 1. 
σHEL(GPa) 7.11 8.9 16.0 

pHEL(GPa) 3.07 5.66 7.2 
σs(GPa) 6.07 4.86 13.2 
σsp(GPa) 0.5 0.6 0.32 

D1 0.1 0.01 0.1 
D2 1.0 0.7 1 

 
The initial conditions were used in the form 
 

(0)

(0)( ) , ( ) 0, ( ) ( ), ( ) 0, ( ) 0i k i ij k k k ij k ku x u x x x x E x        . 

 
Smooth Particle Hydrodynamics (SPH) method was used for a simulation of deformation 

and fracture of RVE under pulse loadings with amplitudes in the range from 5 GPa to 15 GPa 
[14-15].  

Model of RVE containing regular nanoparticle system is shown in Fig. 2. Smoothed 
particles had a size of ~19,6 nm. 

The concentration of phases in the volume element was set equal to specific value of 
concentration in macroscopic specimen. In the framework of continuum mechanics, kinematic 
and dynamic parameters of state are averaged over the volume of material particle. 

Macro-scale kinematic parameters of structured medium can be defined using averaged 
components of particle velocity < iu > and components of strain rate tensor< ij >.  

Particle velocities, stresses, and temperature are distributed non-uniformly over the RVE of 
nanocomposite. The homogenization of kinematic parameters method is appropriate for 
defining the displacement vector components on boundaries of the RVE: 

 

     
0

1 RVEV

i i k
RVE

u u ( x )dV
V

    ,    (12) 

 
where VRVE  is the representative volume.  

Components of effective strain rate tensors and rotation rate tensor are defined by Eq. (13) 
and components of effective stress tensor are defined by Eq. (14): 
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where iu   is averaged mass velocity, iu  is the local mass velocity in VRVE. 
 

0

1 RVEV

ij ij
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dV
V

    ,     (14) 

 
where < εij > are the components  of macroscopic strain tensor, εij are the components of local 
strain tensor, VRVE  is the representative volume. 

In this case, it’s acceptable to use the continual approach for the description of inelastic 
strains. 

The averaged mass density is defined by Eq. (15) that takes into account a distribution of 
phase mass densities of in RVE.  

 

0
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i
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( x )dV
V
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Increment of specific internal energy of deformed RVE is defined in consisted with Hill-
Mandel principle of macrohomogeneity as follows: 
 

RVEV e
ij0

RVE

1
dV

V
e

ij ij ij            .    (14) 

 
Components of the effective stress tensor can be defined by Eqs. (14).  
It should be noted, that in the context of present approach, mechanical properties of 

multiphase medium are extracted from mechanical response so that no approximation 
equations predicting the properties are required. 

Effective moduli of elasticity are defined by Eq. (15) using the data on computed values of 
longitudinal LC and bulk BC  velocities of wave propagation. 

 
2 2 2 2 2
s B L B s

4
C , K C , C C C

3
         ,    (15) 

 
where    is averaged mass density in loaded part of the volume behind the front of stress 
wave. 
  
3 RESULT AND DISCUSSION 
 

Grains of crystalline phases of ceramic composites exhibit different mechanical 
impedances ρCl (ρ is the mass density, and Cl is the longitudinal sound velocity). Grains of 
condensed phases of ceramic composites have different mechanical impedances. For ZrO2, 
ZrB2 , B4C impedance values ρCl are: 4.28, 5.08, 3.55  [107 kg/m2 s] respectively, while the 
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Hugoniot adiabat curves of ZrO2 and B4C in the range of pressures up to 15 GPa are 
approximate [13,16,17,18]. 

On the meso-scale level, shock waves are reflected from phase boundaries. This causes 
strengthening particles distribution to affect a shock wave front pattern. Fig.2. shows a 
sequence of 3 RVE of given phase concentrations with distributed particles over the volume. 
Model RVE of composites and nano-composites had sizes of 24x24 μm and 2,4x2,4 μm. 
Sizes of strengthening particles and voids were set to 3 μm and 300 nm respectively. Fig. 2 
show model RVEs with uniform distribution of particles (a) and particles clusters (b) respectively.  
 

    
a       b 
Fig.2 Models of structured ceramic composites  
 
Pressure behind the elastic wave front in RVEs shown in Fig.3. 

         
a       b 

Fig.3.Pressure behind the elastic stress wave in ZrB2- 30 Vol. % ZrO2 composite 
 

Clusters of strengthening particles produce heterogeneous strain field behind the wave 
front. Difference of impedances between reinforced particle grains and the matrix cause 
waves to be reflected from phase boundaries and interact on meso-scale level. This effect is 
negligible for nanocomposites because of fine grain size. Stress pattern behind the front of 
elastic precursor in the RVE of uniform strengthening particle distribution is less 
heterogeneous than in RVE with clusters. On the meso-scale level, occurring stress gradients 
may cause a local microcrack nucleation. A possibility of crack nucleation depends not only 
on shear and tensile stress thresholds but also on time criterion of crack nucleation and growth 
at micro-scale level. To evaluate time required for microcrack nucleation in condensed phase, 
the S.N. Zhurkov formula can be used: 
 

0
0

U
( ,T) exp( )

kT

 
   ,     (16) 

 
where τ is a fracture life, τ0  ≈ 10-13 s ,  k is the Boltzmann constant, U0 is the dissociation 
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energy of matter, T is the temperature, γ =qVa , Va is the activation volume, q is the stress 
concentration parameter near defects. 

The dissociation energy U0 of ZrB2, ZrO2, B4C can be varied in ranges of 2482 −2540, 
700−820, 1350 −2030 kJ/kg respectively [19]. Therefore, microcrack nucleation times for 
condensed ZrB2, ZrO2, B4C matrix are on the order of 10-10 s, 10-9 and 10-8 s-1 respectively. These 
microcrack nucleation times were in agreement with these obtained from the simulation. The 
presence of nano-particles clusters in the RVEs may cause local strain heterogeneity. Relaxation 
of local shear stress heterogeneity is associated with nanocracks nucleation. Shear bands do not 
grow in a compression wave. Growth of microcraks and micro-cavity formation may occur under 
tensile stresses in the region where unloading waves interact. When subjected to pulse loading 
with amplitudes on the order of the Hugoniot Elastic Limit, ZrB2-ZrO2, ZrB2-B4C ceramic 
composites can accumulate damage while macroscopic strength is preserved. 

Fig.4. shows damage pattern behind the front of the elastic precursor with amplitude of 
6GPa, behind the front of shock wave with amplitude of 10 GPa at 6 10-10 s. Figs. 4 (a) and 
(b) shows the pattern of local damages behind the shock wave front in composites ZrB2-ZrO2 

(a), ZrB2-B4C (b) with uniform distributed inclusions at 6 10-10 s. 
 

 
 a       b 

 
c       d 

Fig.4. Numerical simulation of damage in ZrB2- 30 Vol. % ZrO2 and ZrB2- 30 Vol. % B4C. 
 
Fig. 4c,d shows the distribution of local damages behind the shock wave front in composites 
ZrB2-ZrO2 (a), ZrB2-B4C (b) with clusters of inclusions (See Fig.2(b)). It’s found that clusters 
of strengthening inclusions cause a decrease in the macro-scale fracture stress threshold. 

Results of simulation show that damage of nano-composites near voids can be formed under 
stress pulse amplitude less than the Hugoniot elastic limit of matrix.  

Self-organization process of micro-damages and occurrence of mesoscale shear band were 
observed in the ceramic nano-composite under compression at high strain rates (See Fig. 4(c,d)). 

These results are in agreement with data obtained in [20, 21]. 
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Tensile stress gradients occurring in the region, where unloading waves interact, are most 
dangerous for nanocomposites. In the absence of coarse strengthening elements (fibers, 
particles), which can play a role of barrier that blocks micro-crack opening and propagation, 
the spall strength of nanocomposites depends mainly on relative volume and size of voids.  
 

 
Fig.5. Specific internal energy per unit mass of ZrB2- 30 Vol. % B4C 

  
 Fig.5 shows the drops in local specific internal energy of ZrB2- 30 Vol. % B4C 
nanocomposite in the point at boundary of the first and second RVE (See Fig.2).  

Obtained numerical results confirm the findings [22] that damage mechanisms of different 
characteristic duration take place in nanostructured materials. Fracture of ceramic 
nanocomposites under pulse and shock-wave loadings is provided by fast processes of 
intercrystalline brittle fracture (curve part AB) and relatively slow processes of ductile 
fracture via growth and coalescence of microvoids and opened microcracks (curve part BCD).  

In particular, brittle behavior is realized effectively under high strain rates. Ductile fracture 
is realized via microvoids coalescence mechanism. Thereby fracture of ceramic 
nanocomposites under pulse loadings has a quasi-brittle behavior. 
  
4 CONCLUSIONS 
 

Multi-scale computer simulation approach was applied to research of mechanisms of failure in 
ceramic nanocomposites under dynamic loading. Damage nucleation and accumulation in quasi 
brittle ceramics nanocomposites were simulated under impact loadings.  
The probability of fracture was estimated for ZrO2 − ZrB2, and ZrB2 − B4C nanocomposites under 
pulse loadings of microsecond duration. 

The computational models of a structured representative volume (RVE) of ceramic 
nanocomposites were developed using the data of structure researches at meso-, micro -, and 
nanoscale levels.  

The critical fracture stress on meso-scale level depends not only on relative volumes of voids 
and inclusions, but also on the parameters of inclusions clusters. 

Damage of ZrO2 − ZrB2, and ZrB2 − B4C nano-composites can be formed under stress pulse 
amplitude of less than the Hugoniot elastic limit of matrix. These damages caused the changes of 
the spall strength of nano-composites. 
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The Hugoniot elastic limit of ceramic nanocomposites decreases with increasing volume 
concentration of nano-void clusters. 

The spall stress of ceramic nanocomposites depends on relative volumes and sizes of voids and 
inclusions. 

Self-organization process of micro-damages and occurrence of mesoscale shear band were 
observed in the ceramic nano-composite under compression at high strain rates.  
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