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Abstract. Harmful chatter vibrations in milling are generated mainly by regenerative 
mechanism. This mechanism connected together with process discontinuity cause troubles 
during numerical calculations, especially for two degree of freedom model (2dof). Therefore, 
here dynamics of 2dof system with two variants of smoothing function are analysed with the 
help of numerical methods using bifurcation diagrams and Poincare sections. Finally, some 
practical conclusions for cutting process are drawn from this study.  
 
1 INTRODUCTION 

Nowadays, cutting process is still one of the most popular manufacturing method. Also 
milling process, as a kind of cutting operation, is very often applied in industry practice. An 
increased industrial competition has driven the need for manufacturers to reduce costs and 
improve dimensional accuracy. The efficiency of a machining operation is determined by the 
metal removal rates, cycle time, machine down time and tool wear. A primary factor that 
limits process efficiency in machining is a phenomenon called chatter. Chatter is a dynamic 
instability that can limit material removal rates, cause a poor surface finish and potentially 
damage the tool and/or the workpiece. From the historical point of view, machine tool chatter 
goes back almost 100 years, when Taylor, as the first, described this phenomenon [1]. After 
the extensive work of Tlusty et al. [2], Tobias [3] and Kudinov [4, 5], the so-called 
regenerative effect has become the most commonly accepted explanation for machine tool 
chatter. However, much latter another chatter mechanism has been developed by Grabec [1]. 
This mechanism, called frictional chatter can cause interesting phenomena like deterministic 
chaos [1, 6-8]. The regenerative effect is related to the wavy workpiece surface generated by 
the previous cutting tooth passage. While, the frictional mechanism bases on dry friction 
between the tool and the workpiece.  
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In the literature, the most often continuous orthogonal cutting operations are analysed, e.g. 
turning. In case of turning, the governing equation is relatively simple because the tool has 
one cutting tooth (blade) which still is in contact with a workpiece providing that depth of cut 
is positive (when system vibrations are small) [6-10]. In case of milling, the direction and 
value of the cutting force is changing due to rotation of the multi-blade tool, and the cutting is 
interrupted as each tooth enters and leaves the workpiece. Consequently, the resulting 
equation of motion is a non-smooth and interrupted delay differential equation [11-14]. That 
causes troubles during numerical calculations, especially for two degree of freedom model 
(2dof). Therefore, here dynamics of the milling model is analysed with the help of numerical 
methods using bifurcation diagrams and Poincare sections. Finally, some practical 
conclusions for cutting process are drawn from this study. 

 

2 NON-SMOOTH MODEL OF CUTTING 
Models of milling process are non-smooth by nature because a cutting tool has several 

cutting blades, which are in contact with a workpiece during some time intervals of cutting. 
For the rest of time, tool blades are away from the workpiece. This causes discontinuities, 
which make difficulties in numerical simulations and analytical solutions, as well. Therefore, 
modelling of milling process is very important and complicated from technical point of view.  

Generally, during milling material is removed from a workpiece by a cutting tool, which 
rotates with angular speed  (in rad/s, but =πn/30 if n [rpm]). A schematic representation of 
up-milling process is shown in Figure 1, as a two degree of freedom (2dof) system.  
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Figure 1: 2 dof model of milling 
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The cutting tool is represented as a rigid body suspended on visco-elastic systems both in x 
and y directions. Properties of the suspension are defined by a viscous damping coefficients 
cx, cy and nonlinear stiffness defined with the help of kx, ky, x, y. The cutting force Fj acting on 
j-th tooth (j=1,2 .., z) is decomposed on the tangential Ftj and normal Fnj components. 
Definition of the tangential and the normal forces is presented below: 

 
,

tj t p j

nj n p j

F K a h

F K a h
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where, z means the number of tool teeth, ap is the axial depth of cut, hj is a chip thickness. Kt 
and Kn are specific cutting forces which depend on the cutting material properties. Typical 
relationship between Kt and Kn for classical materials is Kn 0.3Kt. The coefficient  also 
depends on the material, and is usually estimated from 0.75 to 1. 

The chip thickness hj(t) is a function of  the feed rate f, the present tool vibrations (x(t)) and 
vibrations of the previous tooth (x(t-)). Theoretically, the chip thickness hj can be positive or 
negative, but only positive value has a practital meaning. Therefore, the actual chip thickness 
hj is defined with the help of Heaviside step function H() as follows: 
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where, =60/zn is the tooth passing period, j is an angular tool position which is defined as 
follows:  

 ( 1) ; 1,2...,j t j j z       (3) 

where,  is an angle between subsequent teeth: 

 
2
z
   (4) 

We have to remember that j-th tool blade cuts material only when the position angle of a tool 
is between the entry (s) and exit (e) angle, therefore the step function gj , is used to define 
whether the tool is in cut or not: 

   1,

0
s j e

j jg
elsewhere
  


  

  
 

 (5) 

Projecting the forces on x and y direction, summing them for all cutting tooth and taking into 
account equation (5) the cutting forces are as follows: 
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The entry (s) and exit (e) angles depend on the axial depth of cut (ae) and the tool diameter 
(d) as follows:  

 
20, cos e
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d
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In a case of full immersion milling, according to Figure 1 the equation (7) takes the form: 

 0, / 2s e      (8) 

The conditions described in Eq. (5) are realized by non-smooth Heaviside function: 

 (sin ) (cos cos )j j j eg H H       (9) 

but, for ease of numerical computations the discontinuous Heaviside function H() is replaced 
by its smooth approximation using the sigmoid function given by: 
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where,   is a smoothing parameter which can have a key meaning in simulations. 
According to Figure 1, the equation of motion, for the two degree of freedom milling 

model can be written as follows: 
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where, mx and my is  mass of the tool. The stiffness (Fs)  and damping force (Fd) in x and y 
directions are defined:  
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c means the viscous damping coefficient, k and  are linear and nonlinear stiffness coefficients 
respectively. Finally, the equation of motion takes the form: 

 

2 3

2 3

12

12

x
x x x x

x x

y
y y y y

y y

x x x x F
m m

y y y y F
m m

  


  

   

   

 

 
  (13) 

where, damping coefficient are defined 

 / (2 ), / (2 )y y y y x x x xc m c m       (14) 

In this study symmetry between x and y directions is assumed. In consequence the visco – 
elastic coefficients, taken to numerical calculations, indexed as x and y have the same value. 
 
 



Andrzej Mitura and Rafal Rusinek 

 5 

a)      b) 

   
Figure 2: Heaviside function (a) and its smotthed approximation (b) 

The substitution (10) does not have any significant effect on the system dynamics providing 
that  is big enough because the original Heaviside function Figure 2a is identical like the 
smooth one presented by blue line in Figure 2b. The results are obtained with the smoother 
version almost 10 times faster using the Matlab-Simulink inbuilt command ode45 with a 
specified the absolute and the relative tolerances of 610  for numerical integration. On the 
other hand, too small   (Figure 2a, red line) can get worst precision of the numerical results. 
This problem is analysed in the next section. In our computation we assume 610   but the 
results are compared also with =102. 
 

3 CUTTING DYNAMCS 
On the basis of nonlinear and discontinuous two degree of freedom model presented in the 

Figure 1, chatter vibrations are analyzed numerically in Matlab-Simulink. Parameters for 
numerical analysis are taken from [15] as follows: fz= 30.01 10 m, nx=ny=920rad/s, 
mx=my=2.573kg, x=y=0.0032, x=y= 122 10 N/m3, z is from 1 to 4, Kt= 85.5 10 N/m2, 
Kn= 82 10 N/m2, n 500,20000 rpm, d= 312 10 m, ae= 34 10 m, ap

30,2 10  m, =1  
and initial conditions ( 0) 0.00001x t m  , ( 0) 0 /x t m s  , ( 0) 0.00001y t m  , 

( 0) 0 /y t m s  .  
The numerical simulations were made for four variants, for different number of tool blades 

z. The calculation time of all simulation was 20 seconds. To determine stability lobes 
diagrams maximum of response in the x direction are used. This maximum was searched in 
the time interval from 19 to 20 seconds. Obtained diagrams (Figure 3) are presented in the 
form of color maps, where the different colors correspond to the respective levels of 
maximum of coordinate x. Figure 3 shows areas, where vibrations during cutting process are 
safe (blue colour) or unsafe (low or high levels of vibration, respectively). Increasing the 
number of tool blades the dangerous area of vibration is shifted in the direction lower speeds 
(n). However, a larger number of blades can increase amplitude vibration for smaller depth of 
cut ap. That means the unstable lobes are lower situated in the diagrams. 
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a)      b) 

 
 
c)      d) 

 
Figure 3: Stability lobes diagrams of coordinate x for σ=106 and z=1 (a), z=2 (b), z=3 (c), z=4 (d) 

The numerical models which use the original Heavisade functions and approximate 
functions with big values of σ give practically the same results. Next calculations show the 
influence of values of parameter σ on obtained results. For comparison the bifurcation 
analisys is applied with different values of σ. The tested system is not excitated by periodic 
external forces. In this case traditional bifurcation analysis (strobostopic method based on the 
frequency of external force) can not be used. In this paper bifurcation diagrams were created 
for points x(t), which are taken provided that ( ) 0 /x t m s . This method allows for the 
implementation of quantitative and qualitative analysis. From the diagram the maksimum and 
minimum levels of vibration and type of motion (no motion or periodic, quasi-periodic, 
chaotic motion) are possible to determined. Figure 4 presents comparison of the bifurcation 
diagrams versus speed n for two different values of parametr σ: small value 102 and big value 
106. Both cases of system response differ in quality a bit especially about n=13000 rpm.  
Figures 5 and 6 present the phase portraits and the time series for the one selected speed 
n=17783rpm. In this case, both solutions are quasi-periodic motion, but a change of the 
parameter   reveals two significantly different solutions. 

The bifurcation analysis is also repeated versus depth of cut ap for various  (Figure 7). In 
this cae we can see explicitly different solutions depending on σ (see Figure 8 and 9 where the 
phase portraits and the time series are presented). 
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Generally, in selected examples (Figure 6 and 9) when decreaseing value of σ the level of 
vibration in the x direction is reduced. The use of small values of parametr σ deteriorates the 
accuracy of the numerical calculations. 
 

a)      b) 

Figure 4: Bifurcation diagrams versus speed n for ap=1mm, z=1, σ=106 (a), σ=102 (b) 

a)      b) 

Figure 5: Phase space for n=17783rpm, ap=1mm, z=1, σ=106 (a), σ=102 (b) 

  
Figure 6: Time series for n=17783rpm, ap=1mm, z=1, σ=106 (a), σ=102 (b) 
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a)      b) 

Figure 7: Bifurcation diagrams versus the axial depth of cut ap for n =6000rpm, z=2, σ=106 (a), σ=102 (b) 

a)      b) 

Figure 8: Phase space for ap=1.5mm, n =6000rpm, z=2, σ=106 (a), σ=102 (b) 

a)      b) 

  
Figure 9: Time series for n=6000rpm, ap=1.5mm, z=2, σ=106 (a), σ=102 (b) 
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a)      b) 

 

c)      d) 

 
Figure 10: Bifurcation diagrams versus the axial depth of cut ap for n =6000rpm, σ=106 , z=1(a), z=2(b), z=3(c), 

z=4(d) 

 
Figure 10 presents comparison of the bifurcation diagrams for different number of tool 

blades z. These diagrams made for the speed n=6000rpm show that from practical point of 
view, the tool with four blades is the best because the vibrations are smaller than tools with 
z=1, 2 or 3 for all depths of cut.  

The whole analysis is consequently presented only in x direction because there is not 
observable differences between x and y directions. 
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4 CONCLUSIONS 
 In the paper a strongly nonlinear and discontinuous two degree of freedom model of 

cutting process is presented. Obtained results of numerical calculations show the influence of 
the number of tool blades on location of the zone with chatter vibrations. Stability lobes 
diagrams present the regions where the tool with one, two, three or four blades is preferred to 
apply.  For example, for speed n=6000rpm should be applied tool with four blades.  

The discontinuous Heaviside function is approximated by smooth function with parameter 
σ. The values of this parameter influence the accuracy of the numerical simulations, therefore 
it should be estimated carefully.  

This model will be developed in the nearest future in order to explain frictional effect 
which is mentioned in this paper. 
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