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Abstract. An advanced LES code, named SPARK-LES, is currently under development
at CIRA within the frame of the HYPROB program. SPARK-LES is a structured, multi-
block finite-volume code that solves the compressible Navier-Stokes equations with the
final goal of performing accurate simulations of high-pressure combustion with suitable
numerical/physical models. In this paper, the key features of the computational core are
described. Centered high-order explicit and compact schemes for space integration are im-
plemented; different solutions to improve numerical stability and robustness are analyzed
and discussed. The capabilities of the code to reproduce the essential features of turbulent
dynamics are proved by simulating the well-known Taylor-Green vortex problem.

1 INTRODUCTION

Large-Eddy (LES) and Direct Numerical Simulation (DNS) are nowadays regarded
as powerful and reliable techniques in the framework of combustion and propulsion ap-
plications [1]. While for DNS the current computing power available is still far from
enabling a time-accurate and fully-resolved solution of the entire mathematical model,
LES is believed to be a good compromise between computational cost and accuracy. Its
usage in turbulent reacting flows has grown significantly over the last decade, especially
for low-pressure flames [2]; however, a number of recent encouraging results advocate the
application of LES to high-pressure combustion as well [3]. The inherent ability of LES
to capture the essential dynamics of unsteady phenomena on a wide range of space- and
time-scales makes it a valuable tool for both design and research purposes.

In this perspective, the LES code SPARK-LES is currently being developed at CIRA
in the frame of the HYPROB Program [4], funded by the Italian Ministry of Research.
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The Program’s main objective is to improve national system and technology capabili-
ties in hybrid- and liquid-rocket engines for future space applications; for the latter, the
main interest is on LOX/LCH4 technology. The development of a LES code is one of the
on-going research lines of the Program. In a timeframe of four years, the code shall be
able to 1) provide an advanced analysis tool for design purposes, and 2) reproduce the
main physical phenomena occurring within a liquid-rocket thrust chamber (e.g., turbu-
lent mixing, high-pressure combustion, acoustic instabilities) with high-fidelity numerical
methods and state-of-the-art modelling.

The paper is focused on the initial part of the development activity, namely the design
and implementation of the code computational core. The aforementioned phenomena
occur on a wide range of turbulent scales and therefore high-order schemes with good
resolution properties are needed. Classical centered schemes are not dissipative in nature,
but suffer from significant dispersion errors due to their limited stencil [5]. In contrast,
compact schemes are able to provide better resolution on equal order of accuracy by
mimicking a spectral behaviour [6]. Compact schemes are widely used in a finite-difference
context, but are much more rarely applied in a finite-volume framework [7, 8]. The latter
combination appears to be advantageous, by combining the accuracy of compact schemes
with the conservation property of finite-volume methods.

The demand for stability and robustness is also taken into consideration. Usual meth-
ods include artificial dissipation or filtering of the flowfield, while more refined approaches
aim to enforce secondary conservation properties, such as kinetic energy preservation. It
has been proved that the overall stability and accuracy of the scheme notably improves
if quadratic invariants are preserved at a discrete level [9].

The scope of the present work is to prove that the baseline numerical method is able to
accurately reproduce the essential features of turbulent dynamics with high computational
efficiency. To this aim, two classical benchmarks have been considered, the convection of
a subsonic vortex [10] and the well-known Taylor-Green vortex problem [11]. The former
is an excellent verification of the dissipation and dispersion properties of the scheme,
while the latter allows to validate the numerical algorithm on a protoype turbulent flow.
Simulations are performed by directly solving the Navier-Stokes equations without use of
any subgrid-model in order to isolate numerical errors also in under-resolved cases.

The paper is organized as follows. In Section 2, the governing equations are briefly
recalled. Then, the numerical method is introduced in Section 3. Results are finally
presented in Section 4.

2 GOVERNING EQUATIONS

In this work, the compressible, non-reacting Navier-Stokes equations in conservative
form are considered. In a three-dimensional Cartesian coordinate frame (x, y, z), the
motion of a gas with density ρ, velocity u = (u, v, w), pressure p, temperature T and
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total energy E is governed by the system:

∂U

∂t
+
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
= 0, (1)

where U is the vector of conservative variables, U = (ρ, ρu, ρv, ρw,E). The vectors
Fx = Fc

x − Fd
x, Fy = Fc

y − Fd
y and Fz = Fc

z − Fd
z represent the fluxes along the three

components. The inviscid (convective) fluxes are defined as:

Fc
x =


ρu

ρu2 + p
ρuv
ρuw

u(E + p)

 , Fc
y =


ρv
ρuv

ρv2 + p
ρvw

v(E + p)

 , Fc
z =


ρw
ρuw
ρvw

ρw2 + p
w(E + p)

 , (2)

whereas the diffusive fluxes are

Fd
x =


0
τ11

τ12

τ13

(τu)1 − q1

 , Fd
y =


0
τ21

τ22

τ23

(τu)2 − q2

 , Fd
z =


0
τ31

τ32

τ33

(τu)3 − q3

 . (3)

The stress tensor τij and the conductive heat flux qi are expressed by the usual Newton’s

and Fourier’s laws, respectively τij = µ
(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij

∂uk
∂xk

)
and qi = −λ ∂T

∂xi
, where µ is

the molecular viscosity and λ the thermal conductivity of the fluid. The code is provided
with a full real-gas thermodynamic package; here, closure is achieved by means of the
ideal-gas equation of state, p = ρRT .

3 NUMERICAL METHOD

Most of the success of turbulent simulations relies on the use and construction of
accurate discretization methods, in order to compute unsteady turbulent structures on
a wide range of space- and time-scales without significant numerical contamination. It
is widely recognized that ideal numerical schemes for LES and DNS should have the
following properties:

- discrete conservation of primary unknowns;

- high-order accuracy and good spectral properties in smooth regions of the flow;

- stability and robustness.

The fulfilment of these confilicting requirements is not a trivial task. While discrete
conservation of linear invariants can be obtained by casting the discrete equations in
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a locally conservative form, high-order accuracy often comes into opposition with the
robustness of the scheme. These aspects have been taken into consideration carefully in
the design and development of the computational core of the code, and will be discussed
and motivated throughout the following sections.

3.1 Finite-volume discretization

The computational domain is partitioned into a structured grid of hexahedrons indexed
by (i, j, k). The finite-volume method is based upon integration of Eq. (1) over a generic
control volume Ω, yielding

Vijk
∂Ūijk

∂t
+

∫
∂Ω

(Fxnx + Fyny + Fznz) dσ = 0, (4)

where Vijk = |Ω| and

Ūijk =
1

Vijk

∫
Ω

UdΩ. (5)

The integral Eq. (4) applies to each control-volume; as a consequence, surface integrals
over inner cell faces cancel out and discrete global conservation of primary unknowns is
guaranteed through the telescopic property. The built-in global conservation feature is
one of the major advantages of finite-volume methods and formally accomplishes the first
of the requirements listed in §3.

The meaning of the cell integral in Eq. (5) requires further discussion. In a so-called
pointwise approach, nodal values UP are usually supposed to be known at the cell-center,
resulting in a second-order accurate average, i.e., Ū = UP + O(V 2). Therefore, if high-
order accuracy is seeked, correspondent high-order formulas are needed for the evaluation
of the integral. However, a more careful look at Eq. (4) suggests to store and advance
in time the cell average values themselves. In this approach, known as cell-averaged, the
integral has not to be evaluated and the accuracy of the method depends solely on the
fluxes reconstruction [7]. The cell-averaged approach is adopted here and will be used
throughout the paper.

The solution algorithm follows that of any typycal semi-discrete method, in which Eq.
(4) is first semi-discretized in space and then advanced in time.

3.2 Spatial discretization

The surface fluxes appearing in Eq. (4) need to be properly approximated. Without
loss of generality, the cell interface Si−1/2 along a generic (j, k) line and between cells (i)
and (i− 1) will be considered hereinafter. The corresponding flux is defined by:

F̃i−1/2 =

∫
Si−1/2

(Fxnx + Fyny + Fznz) dσ ≈ S
(
F̃xnx + F̃yny + F̃znz

)
, (6)
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where S =
∣∣Si−1/2

∣∣. It is assumed that the normal vector is constant along the interface,

while the operator (̃·) denotes surface averaging. Starting from Eq. (6), the discretizations
of convective and diffusive fluxes will be described separately in the next sections.

3.2.1 Convective fluxes

The convective fluxes are evaluated using face-averaged values of conservative variables:

F̃c
i−1/2 = S

(
Fc
x(Ũi−1/2)nx + Fc

y(Ũi−1/2)ny + Fc
z(Ũi−1/2)nz

)
. (7)

The core of the method, as well as most of the code overall accuracy, lies on a proper inter-
polation of conservative variables to cell faces. Indeed, it is well-known that discretization
of non-linear convective fluxes is crucial for a correct representation of the turbulent en-
ergy cascade, by ensuring that 1) the energy-carrying scales are resolved appropriately,
and 2) numerical dissipation does not interfere with the energy transfer process (in DNS)
or with the subgrid-scale model (in LES). Low dissipation schemes with good spectral
properties are mandatory for an accurate simulation of turbulent dynamics. In light of
this, non-dissipative centered explicit and compact schemes have been implemented [6].

Following [8], face-averaged values are obtained by means of a cartesian-like approach,
i.e., U is assumed to depend exclusively on the curvilinear abscissa along each line of the
grid. Under this hypothesis, the face-averaged value Ũ at the interface (i − 1/2, j, k) is
expressed by the following interpolation formula:

αŨi−3/2 + Ũi−1/2 + αŨi+1/2 =
L∑
l=1

γl
(
Ūi−l + Ūi+l−1

)
. (8)

Eq. (8) represents a generic family of explicit (α = 0) or implicit (α 6= 0) centered in-
terpolation formulas based on cell-averaged values. The coefficients α, L and γl determine
the order of accuracy and the spectral properties of the scheme. In Table 1, a number
of possibilities are given, assuming uniform grid-spacing ∆, along with the corresponding
acronym used in the work. A second-order explicit (2E) and fourth-order explicit (4E)
and compact (4C) schemes are considered in this work. For non-uniform grids, the coef-
ficients involve the metrics of the mesh and are calculated by matching the Taylor series
coefficients expansion of various orders.

It is useful to recall that the formal truncation error of a scheme is an integral measure
of the local error over all wavenumbers in the asymptotic limit of grid-refinement. Thus,
it does not provide any information on how the approximation behaves over the entire
range of length scales a given mesh can resolve. An appropriate tool to quantify the
resolution characteristics is the Fourier analysis [6]. The discrete operator is applied to
a single Fourier wave eikx advecting linearly with speed c, where k is the wavenumber.
The discrete approximation produces a modified wavenumber, k′, whose imaginary part
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Table 1: Interpolation schemes considered in the work.

Scheme α L γ1 γ2 Order

2E 0 1 1/2 0 O(∆2)
4E 0 2 7/12 −1/12 O(∆4)
4C 1/4 1 3/4 0 O(∆4)

Figure 1: Spectral properties of interpolation schemes. Left. Modified wavenumber as a function of the
wavenumber. Right. Modified phase speed as a function of the wavenumber.
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modifies the amplitude of the wave (dissipation), while the real part modifies the speed of
the wave (dispersion). For centered operators, the modified wavenumber has no imaginary
part and thus no built-in dissipation. The results of such analysis for the schemes of
Table 1 are shown in Figure 1. On equal order of accuracy, the 4C scheme shows a better
behaviour with respect to the explicit counterpart 4E. The better resolution of compact
schemes is attributed to their global nature resembling spectral schemes, which makes
them suitable for multi-scale flows.

Finally, note that two approximations are involved in the aforementioned methodology.
First, the cartesian-like approach retains the formal accuracy of the interpolation scheme
only in case of orthogonal grids. This is not an issue since only cartesian grids are
considered here; however, in the general case of distorted grids, a multidimensional stencil
has to be considered. Second, due to non-linearity of convective fluxes, the calculation
of a face-averaged flux on the basis of interpolated face-averaged conservative variables is
formally only second-order accurate. A number of possible remedies are currently under
evaluation, and have not been taken into consideration here.
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3.2.2 Diffusive fluxes

Unlike convective fluxes, diffusive terms are linear and do not raise specific difficul-
ties. In the overwhelming majority of Navier-Stokes methods, they are calculated by a
second-order centered formula. However, in the present work, also a fourth-order ex-
plicit centered scheme has been taken into account. Since diffusive fluxes depend on
face-averaged derivatives of velocity and temperature, the resulting scheme is similar to
Eq. (8), with face-averaged derivatives appearing on the left-hand side. The two resulting
schemes will be indicated in the following by 2Ed and 4Ed.

3.3 Time advancement

Once the convective and diffusive fluxes have been discretized, Eq. (4) reduces to a
system of ordinary differential equations:

Vijk
dŪijk

dt
= Rijk, (9)

where Rijk is the residual resulting from spatial discretization. Time integration is
achieved by standard explicit Runge-Kutta schemes:

Ūn+1 = Ūn + ∆t
s∑
l=1

blR
l (10)

Rl = R

(
Ūn + ∆t

l−1∑
m=1

almRm

)
, (11)

where s is the number of stages, bl and alm are the Runge-Kutta coefficients and the
subscript ijk has been omitted for clarity. Runge-Kutta methods are widely used in
numerical simulations of both incompressible and compressible turbulence, due to their
ease of implementation and relatively large stability footprint. Moreover, they have the
advantage over multistep methods of being self-starting, i.e., information from previous
time-levels is not required. For standard explicit schemes, the temporal order of accuracy
is typically equal to the number of stages, at least for s ≤ 4. The code handles explicit
schemes with arbitrary stages; in this work, a third-order method is employed.

The stability characteristics resulting from the coupling between Runge-Kutta methods
and the spatial schemes described in §3.2 can be again derived by analyzing a linear
advection equation. The result is c∆t

∆x
≤ σi

w′m
, where σi depends on the stability segment of

the time-advancement method on the imaginary axis, while w′m is the maximum value of
k′ achieved by the spatial operator in Figure 1 [6]. To give an example, third-order Runge-
Kutta methods used in conjunction with the schemes 2E, 4E and 4C have an acoustic
CFL limit of

√
3, 1.262 and 1, respectively. It can be concluded that the time-stepping

restriction becomes more severe as the resolution of the method increases.
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3.4 Stability and robustness

Stability and robustness are likely to be the most difficult goals to be combined with
low-dissipation and high-order accuracy requirements. In fact, it is well-known that cen-
tered difference schemes can exhibit instabilities when used at small viscosities (i.e., high
Reynolds numbers), due to accumulation of aliasing errors, imperfect boundary conditions
or skewed grids. The lack of any built-in damping mechanism may allow the growth of
high-frequency modes and lead to erroneous results or to a blow-up of the computation.
An ideal discretization algorithm should be able to prevent, or suppress, any source of
instability while keeping high accuracy and reasonable computational cost. A number
of possible solutions are available in the code, namely second- and fourth-order artificial
dissipation terms [12] and a compact low-pass filter [13]:

αfÛi−1 + Ûi + αfÛi+1 =

Lf∑
l=−Lf

γ̂l
(
Ūi+l

)
, (12)

where αf controls the strength of the filter and ranges from −1/2 to 1/2, and Lf deter-
mines the filter order. Finally, note that the 2E scheme, as obtained by Eqs. (7) and (8),
is cast in a so-called skew-symmetric-like form. Although this method does not preserve
kinetic energy exactly at a discrete level, it has proved to be more stable with respect to
a standard conservative form [9]. Further refinements are currently under development.

4 RESULTS

4.1 Two-dimensional vortical flow

As a first numerical experiment, the convection of a subsonic two-dimensional vortex
in a periodic box is investigated. The aim of the test is to check the capability of the
numerical schemes to accurately convect vortical structures over long times, and was also
proposed by CERFACS as a benchmark to compare the accuracy of several DNS/LES
codes [10]. The initial condition is given by the streamfunction:

Ψ(x, y) = Γ exp

(
−x

2 + y2

2R2

)
, (13)

where Γ and R are related to the strength and the size of the vortex, respectively. The
associated velocity field is calculated by the relations u = U∞+ ∂Ψ

∂y
and v = −∂Ψ

∂x
, whereas

the pressure field is given by

p(x, y) = p0 −
ρ0Γ2

2R2
e−

x2+y2

R2 . (14)

The temperature field is uniform (T = 300K), while density is calculated by the equation
of state, with p0 = 1atm. The vortex is convected at a Mach number M = 0.1 within a
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Figure 2: y-component of the velocity along the centerline after 10 (left) and 40 (right) turnover times
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square periodic box of length L, with R = L/20 and Γ = vmaxR
√
e, where vmax = U∞/25.

The domain is discretized by a uniform mesh with spacing ∆/R = 0.25.
The vortex is expected to travel without deformation. In Figure 2, results are shown

for the three schemes listed in Table 1; all tests have been performed with a third-order
Runge-Kutta scheme with an acoustic CFL of 0.7. The fourth-order methods perform
remarkably well, especially the compact one, which preserves the vortical structure with
minimum phase-lag after 40 turn-over times; on the contrary, the explicit scheme presents
small oscillations due to its dispersive character. The 2E scheme is completely distorted
already after 10 turn-over times, revealing its inadequacy for high-fidelity simulations.
The simulations have required, on average, about 2µs/it/cell on an Intel Xeon 2.7 GHz
processor. The performances are excellent in comparison with other similar codes [10].

4.2 Taylor-Green vortex

The three-dimensional Taylor-Green vortex is an excellent test-case for LES and DNS
codes, as it comprises the key processes of turbulence in a very simple configuration. A
triperiodic cube is filled by the initial conditions:

u(x, y, z) = U0 sin(x) cos(y) cos(z) (15a)

v(x, y, z) = −U0 cos(x) sin(y) cos(z) (15b)

p(x, y, z) = p0 +
ρ0U

2
0

16
[cos(2x) + cos(2y)] [cos(2z) + 2] . (15c)

As time advances, the initial distribution of vorticity is subject to vortex-stretching, thus
generating small scales and eventually causing the vortices to break into turbulence. Since
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there is no forcing to sustain the turbulent motion, a decay is observed after transition.
The problem was also one of the tests proposed for the First International Workshop on
High-Order Methods in CFD, held in Nashville in 2012.

The incompressible problem is entirely governed by the Reynolds number, equal to
1600. However, since the code solves the compressible flow equations, the other dimen-
sional parameters have been set to yield a nearly incompressible condition, i.e. M = 0.1.
The domain consists of a periodic cube with sides of 2π, which has been discretized by a
uniform mesh of increasing resolution, 643, 1283 and 2563 cells.

The usual diagnostic parameters for assessing a numerical solution of the problem are
the time-evolution of the global kinetic energy dissipation rate

ε =
d

dt

1

ρ0Ω

∫
Ω

ρ
uiui

2
dΩ, (16)

and of the integrated enstrophy

ζ =
1

ρ0Ω

∫
Ω

ρ
ωiωi

2
dΩ. (17)

The latter is an indirect measure of the dissipation rate, through the relation εζ = 2 µ
ρ0
ζ.

Figure 3: Dissipation rate as a function of the non-dimensional time t∗ for different resolutions, schemes
and filters
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The computed time-evolution of ε and εζ is shown in Figures 3 and 4, respectively,
for different resolutions, schemes and filters. A reference solution obtained by a pseudo-
spectral code is also reported for comparison [11]. Where not otherwise specified, results
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Figure 4: Enstrophy-based dissipation rate as a function of the non-dimensional time t∗ for different
resolutions, schemes and filters
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are obtained on the 1283 grid, using the scheme 4C for convective fluxes, 2Ed for diffusive
fluxes and without filter. On a discrete level, the two quantities ε and εζ have a different
meaning: the former comprises all sources of dissipation (physical as well as numerical),
while the latter is solely due to vorticity and hence does not take into account any form
of artificial dissipation. The fourth-order schemes are in very good agreement with the
reference solution, both on the 1283 and the 2563 grids and for both the energy- and
enstrophy-based dissipation rates. This means that no spurious dissipation is added to the
solution and turbulent scales are well resolved by the numerical scheme at any resolution.
As expected, the scheme adopted for the diffusive fluxes does not seem to have a significant
influence. The effect of the filter is mainly revealed by the enstrophy-based dissipation
rate: by removing a part of the energy-dissipating turbulent structures, the resulting
dissipation-rate is lessened accordingly.

5 CONCLUSIONS

The main elements of the computational core of the CIRA code SPARK-LES have
been described. Numerical experiments show that the code is highly efficient and very
accurate for basic, but representative, benchmarks. The best available scheme (fourth-
order compact) performs remarkably well for both convection of a subsonic vortex and
the challenging Taylor-Green vortex problem. Further numerical and physical models are
being implemented and validated in the code in order to be able to simulate more complex
test cases including real gas effects and combustion in low and high pressure conditions.
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