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Abstract. This paper deals with nonlinear vibration analysis using finite element method for 

frame structures consisting of elastic and viscoelastic damping layers supported by multiple 

nonlinear concentrated springs with hysteresis damping. The frame is supported by four 

nonlinear concentrated springs near the four corners. The restoring forces of the springs have 

cubic non-linearity and linear component of the nonlinear springs has complex quantity to 

represent linear hysteresis damping. The damping layer of the frame structures has complex 

modulus of elasticity. Further, the discretized equations in physical coordinate are transformed 

into the nonlinear ordinary coupled differential equations using normal coordinate 

corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, 

the damping layer and the springs, we evaluate the influences of the damping couplings on the 

linear and nonlinear impact responses. We also investigate influences of damping changed by 

stiffness of the elastic frame on the nonlinear coupling in the damped impact responses. 
 

1 INTRODUCTION 

Springs are often used not only for heavy structures but also for lightweight structures such 
as parts in automobles to insulate them from external vibrations and shocks. However, in 
many cases, the stiffness of a lightweight structure is not sufficiently high for the structure to 
be considered rigid. Thus, in dynamic analysis, it is necessary to deal with these structures as 
elastic bodies. If the structures comprise resins, they should be treated as viscoelastic bodies. 

Many researchers have studied for the nonlinear vibrations of concentrated masses with 
springs [1]. The authors previously proposed a fast numerical method to compute the 
nonlinear vibrations in an elastic/viscoelastic block with a nonlinear spring [2].  

To reduce vibrations, viecoelastic damping materials are often laminated on the metal 
structures. Damping characteristics (e.g. modal loss factors) of these laminated panels are 
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affected by not only properties of the viscoelastic materials but also stiffness of the metal 
panels. To calculate the modal loss factors, which corresponds to modal damping when the 
structure are deformed as eigenmodes at resonant frequencies, complex eigenvalue analysis 
are often used. To compute the modal loss factors using FEM under linear problem, Johnson 
proposed Modal Strain Energy Method (i.e. MSE Method) [3,4]. Using this method, the 
modal loss factors can be computed using material loss factor for each element and the ratio 
of modal strain energy for each element to total modal strain energy. This method is very 
useful to investigate damping mechanizm in the metal structures with viscoelastic layers. 
However, there are few reports to treat nonlinear vibration problem of the metal structures 
with viscoelastic damping  layers supported by nonlinear spring. 

This paper describes vibration analysis using FEM for elastic structures with viscoelastic 

layers connected with nonlinear springs with hysteresis. We think this is a simplified model of 

a subframe supported by rubber mounts in automotive suspensions. The restoring force of the 

spring is expressed as power series of its deformation. A complex spring constant is 

introduced for the linear component of the restoring force. The finite elements for the 

nonlinear spring are expressed and they 

are attached to the elastic / viscoelastic 

structures, which are modeled as solid 

finite elements with a complex 

modulus of elasticity. We obtain the 

nonlinear discrete equations of motion 

for the whole structure. To get modal 

loss factors, we introduce small 

parameters concerning damping to 

complex eigenvalue problem of the 

equations under small deformation. 

And we obtain asymptotic equations from the zero and first orders. Then, the approximate 

modal loss factors are obtained like MSE. Further, by introducing normal coordinate 

corresponding to eigenmodes. the nonlinear discrete equations in physical coordinates are 

transformed into nonlinear ordinary coupled equations. The transformed equations are rapidly 

computed to obtain the nonlinear transient responses with a fairly small dof.  

As a numerical example of this proposed FEM, we deal with elastic frames with damping 

layers supported by multiple nonlinear springs with hysteresis. Using the proposed method, 

we show new phenomena including nonlinear coupling between nonlinear springs with 

hysteresis and elastic frames and viscoelastic layers. We clarify influences of amplitude of the 

impact force on nonlinear transient responses. 

2 NUMERICAL MODEL 

We use a simplified simulation model for frame structures supported by springs on four 

corners of the frame as shown in Figure 1. We set the origin at one corner as shown in Figure 

1 in the x y plane on the upper surface of the frame. There exist four nonlinear springs in the z 

direction on each four corners. Further, on these corners, linear springs are set both in the x 

and y directions. The frame structures are composed of a steel frame and a viscoelastic 

damping layer. Figure 2 shows three models which we investigate. The detail geometry of the 

Figure 1:  Simulation model 
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models are shown in this 

figure. “Elastic Frame Model” 

as shown in Figure 2 has only 

a steel frame. This has no 

viscoelastic damping layer. 

“Elastic Frame model with 

Damping Layer” has a steel 

frame with a damping layer. 

Thickness of the frame is 

10mm and the thickness of the 

damping layer is 20mm. “High 

Stiffness Elastic Frame model 

with Damping Layer” has also 

a steel frame and a damping 

layer. But, thickness of the 

frame is 20mm which is twice 

of the thickness for “Elastic 

Frame model with Damping Layer”.    

The concentrated nonlinear springs in the z 

direction have cubic nonlinearity in the relation 

between their displacement mzu and their restoring 

force mzR  as shown in Figure 3. Linear hysteresis 

damping is introduced into the restoring force of 

the nonlinear springs. Namely, linear components 

of the spring constants have complex quantity as 

)1(11 smzm j  . 
s  shows the loss factor of the 

springs. Further, there also exist linear 

concentrated springs in x  and y  directions at the corners. These linear springs have the same 

complex quantity as the linear component of the nonlinear springs. As shown in Figure 1, the 

excitation point is ( x , y , z )= (575,30,0 on the upper surface of the steel frame. We evaluate 

impact responses of this simulation model. The evaluation point is ( x , y ) = (575,30) in Figure 

2 on the bottom surface of the frame with the damping layer.  

3 NUMERICAL METHOD 

We demonstrate a numerical method to calculate nonlinear responses by considering 

coupled damping properties for the elastic structures having viscoelastic damping layers 

connected to the nonlinear concentrated springs with linear hysteresis damping.  

3.1 Discretized equation for the nonlinear concentrated springs with linear hysteresis 

First, we show discretized equations for the nonlinear concentrated springs with linear 

hysteresis [2]. We assumed that the nonlinear concentrated springs with viscoelasticity have 

the principal elastic axes in the z  direction as illustrated in Figure 1. We introduce the 

Figure 2: Detail geometry of elastic frames with damping layer 

suported by nonlinear / linear springs 
 

Figure 3: Restoring force of nonlinear springs 
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displacement as mzu , ( ,...3,2,1m ) in the z  direction at the nodal points 
m , ( ,...3,2,1m ) 

where the nonlinear springs are attached with the steel frame. The nodal force at the point m  

is expressed using the power series of mzu . When cubic nonlinearity is assumed, the restoring 

force mzR of the spring can be expressed as follows. 

3

3

2

21 mzmzmzmzmzmzmz uuuR    (1) 

Next, linear hysteresis damping is introduced as )1(11 smzm j  . j  is the imaginary unit. 

mz1  is the real part of 
m1 , while 

s   is the material loss factor of the spring. The relation in 

Equation (1) can be rewritten in the matrix form as follows: 

}{}]{[}{ 1 mmmm duR    
(2) 



















mz

m

1

1

00

000

000

][



  ,
 

},0,0{}{ 3
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2 mzmzmzmzm uud      

        (3) 

where T

mzmymxm RRRR },,{}{  , 0 mymx RR
 
is the nodal force vector at the node

m . 

T

mzmymxm uuuu },,{}{ 
 
is the nodal displacement vector at the node 

m . ][ 1m  is a complex 

stiffness matrix involving the linear term of the restoring force. }{ md  is a vector containing 

the nonlinear terms of the restoring force. 

3.2 Discretized equation for the elastic frame and the viscoelastic damping layer 

For vibration of the steel frame and the viscoelastic damping material, we used discretized 

equations written in the following equations from Equations (4) and (5). They correspond to 

conventional linear finite element model in consideration of linear hysteresis damping.   

    eseseseses fuKuM }{}{}{   
(4) 

esK ][  and esM ][  are the element stiffness matrix and element mass matrix, respectively. 

esf }{ and esu }{  are the nodal force vector and nodal displacement vector in an element e . 

By replacing complex modulus of elasticity with real modulus of elasticity, the viscoelastic 

damping layer can be modeled using finite elements. Consequently, the element stiffness 

matrix esK ][  in Equation (4) becomes to have complex quantities in Equation (5).  

     seesRes jKK  1  (5) 

esRK ][
 
is the real part of element stiffness matrix for the viscoelastic material. se is the 

material loss factor corresponding to each element . 

For the elastic and the viscoelastic materials, isoparametric hexahedral elements with the 

non-conforming modes [5] are chosen. For the viscoelastic damping material, the storage 

modulus of elasticity is 8.00 10
8
 [N/m

2
], the mass density is 1.45 10

3
 [kg/m

3
] and the 

material loss factor se  is 0.333.  

e
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3.3 Discrete equations for the global system between the linear / nonlinear springs and 

the elastic frame with the viscoelastic damping layer  

The restoring force in Equation (2) is added to the nodal force at the connected nodes 

m  between the nonlinear concentrated springs in the z direction  and the elastic frame. 

Further, the linear springs in the x and y directions are also attached. The next equation can be 

obtained for the global system [2]: 

}{}ˆ{}]{[}]{[ fduKuM  , 
m

mdd }ˆ{}ˆ{  
(6) 

where }{ f , ][K , ][M , and }{u are the external force vector, complex stiffness matrix, 

mass matrix, and displacement vector in the global system, respectively. }ˆ{ md  is modified 

from }{ md to have a vector size identical to dof of the global system. 

3.4 Computation of modal loss factors 

Next, we explain a computation method to obtain modal damping (i.e. modal loss factor) 

for the concentrated springs and the solid bodies (i.e. the elastic frame with the viscoelastic 

damping layer) in the global system. We neglect the nonlinear term under small deformation 

and the external force becasuse of resonance conditions in Equation (6). Next, it is assumed 

that 



can be expressed as 
tjeu }{}{  .   and t  represent the angular frequency and the 

time, respectively. Consequently, we have homogeneous equation of Equation (6), which 

corresponds to complex eigenvalue problem. 

}0{}){])[1()()1(]([
max

1e

)()(2)(

R 


e
i

e

i

tot

i

ee MjjK    
(7) 

In this equation, e  is the elements' material loss factors which includes s and se .  
2)( )( i  is the real part of complex eigenvalue. Superscript 



 stands for the i-th eigenmode. 



  is the complex eigenvector.



  is the modal loss factor. Next, we introduce the 

following se  using the maximum value  among the elements' material loss factors e , 

(e=1,2,3,...emax). 

max/ ese  , 1se  (8) 

If we assume 1max  , solutions (i.e. complex eigenvalues and complex eigenvectors) 

of Equation (7) are expanded [4,7] using a small parameter max j : 

 
(9) 
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Under conditions of 1se  and 1max  , we can obtain 1max se . Thus,  can 

be regarded as small parameters like  . In Equations (9),(10) and (11), 



 ,
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 ,





{ }mR
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 and 



 , 



 , 



  and 



 ,



 , )(

5

i  have real quantities. By substitution of 

these equations from Equations (9) to (11) into Equation (7), we obtain approximate equations 

using 
0  and 

1 orders. Finally, the following equation can be derived by arranging the 

approximate equations: 

    



max

1

e

e

i

see

i

tot S  
(12) 

From Equation (12), modal loss factor 
 i
tot  can be calculated using material loss factors 

e  

of each element  and  share )(i

seS  of strain energy of each element to total strain energy. 

Equation (12) has the same form of MSE Method [3, 4] proposed by Johnson. This method 

helps us to decrease computational time for large-scale finite element models for the damped 

structure. And in Equation (12), 
 i
seeS corresponds to contribution of each element e to i-the 

modal damping. Using this, we can analize coupled damping properties in the elatic frame 

with viscoelastic damping layer supported by complex springs having linear hysteresis.   

3.5 Conversion to nonlinear equations in normal coordinates from equations in physical 

coordinate

When we compute impact responses using Equation (6) in physical coordinates directly, it 

takes considerable computational time. We adopt a numerical procedure to diminish the 

degree of freedom for the discretized equations of motion [2, 6]. 

We assume that the linear natural modes of vibration }{ )(i  can be approximated to 
0

)( }{ i . 

Further, the nodal displacement vector can be expressed by introducing normal coordinates ib
~

 

corresponding to the linear natural modes 
0

)( }{ i  as follows: 
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By substitution of Equation (13) into Equation (6), the following nonlinear ordinary 

simultaneous equations with regard to normal coordinates ib
~

can be obtained. 
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We can save considerable computational time because Equation (14) has a much smaller 

degree of freedom than Equation (6). iimz
~

is the z-component of the eigenmode 
0

)( }
~

{ i at the 

m -th connected node  between the frame and the nonlinear springs. The damping term in 

,... ,... ,...

e

m
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Equation (14) can be 

derived in an identical 

form to Equation (12). 

4  NUMERICAL 

RESULTS AND 

DISCUSSION 

4.1 Results of modal 

loss factors, resonant 

frequencies and 

eigenmodes 

Tables 1 and 2 show 

eigenmodes 
0

)( }
~

{ i , 

resonant frequencies 

)2/()(

0  i  and modal 

loss factors )(

tot

i  for 

modes 1 to 14 and 

modes 15 to 

21,respectively.  

In these tables, 

arrows stand for 

directions of rigid 

motions in eigenmodes 

especially.   

We give the 

material loss factors of 

the steel frames as 

e f  =0.001. And 

that of the viscoelastic 

damping layer is  

e d  =0.333. That of 

the springs is e s 

=0.100.  

In these tables, 

results for the three 

models are shown. 

Results of “Elastic 

Frame Model” in 

Figure 2 are the left 

deformation pattern in 

Tables 1 and 2. Results 

of “Elastic Frame 

Table 1: Vibration modes for mode 1 to mode 14 
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Model with Damping 

Layer” in Figure 2 are 

the central deformation 

pattern in the tables. 

Results of “High 

Stiffness Elastic Frame 

Model with Damping 

Layer” in Figure 2 are 

the right deformation 

pattern in the tables. 

(1) Results of 

“Elastic Frame Model” 

In this paper, 

material loss factor s

=0.100 of the springs 

are larger than f

=0.001 of the steel 

frame. If eigenmodes 

include no elastic 

deformation of the steel 

farme, the modal loss 

factors are close to s

=0.100. Thus, modal 

loss factor tot =0.996 of 

mode 4 (i.e. rigid mode 

of the frame) is larger 

than  tot =0.0014 for 

mode 13 (i.e. elastic 

mode of the steel frame). 

Becasuse the deformation of the springs is dominant in mode 4, the share of the strain energy 

in Equation (12) in the springs is large. This leads to high modal loss factor. On the other 

hand, the deformation of the springs are small in modes from 10 to 20 due to the elastic mode 

of the steel frame without damping layer. This leads to low modal loss factor. 

For mode 2 including both rotation of the steel frame about the x axis and elastic 

deformation of the frame, the modal loss factor tot =0.0564 is middle value between those for 

mode 4 and mode 13. These phenomena are generated due to dependence of eigenmodes on 

the share of the strain energy in Equation (12). 

 (2) Results of “Elastic Frame Model with Damping Layer” 

Modal loss factor tot  of  mode 10 for “Elastic Frame Model with Damping Layer” is 

larger than that of mode 10 for “Elastic frame Model”. Because the viscoelastic damping 

material has high material loss factor d =0.333, modal loss factors tot for modes from 10 to 

20  including elastic deformation of the frame increase. 

Table 2: Vibration modes for mode 15 to mode 21 
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If we assume to remove the springs, we set that 

modal loss facors tot of the laminate (i.e. 10mm 

thickness of the steel frame plus 10mm thickness of 

the damping layer) are less than the material loss 

factor s =0.100 of the springs.  Therefore. tot =0.997 

of mode 4 including larger deformations in the springs 

is larger than tot =0.0467 of mode13 including larger 

elastic deformation in the steel frame.  Modal loss 

factor tot =0.0564 of mode 2 shows a middle value 

between them (i.e. modes 4 and 13) because this mode 

contains both elastic deformation in the steel frame and 

the deformation in springs when rotating motions of 

the frame occur. 

 (3) Results of “High Stiffness Elastic Frame 

Model with Damping Layer” 
Because thickness of the steel frame for this model is 

20mm, which is double for “Elastic Frame Model with 

Damping Layer”, this frame has higher stiffness. 

However, due to this high rigidity, damping decrease for 

modes from 10 to 20 having large deformation in the 

frame. For instance, modal loss factor tot =0.0166 of this 

model for mode 16 is less than tot =0.0511 of 

“Elastic Frame Model with Damping Layer” 

for mode 15. According to Equation (12),  not 

only material loss factors but also share of 

strain energy are required to increase modal 

loss factors. Therefore, to increase modal loss 

factors of the frame with the damping layer, 

high share of the strain energy in the 

viscoelastic damping layer is required. 

Actually, we can find lower share of strain 

energy of the steel frame for  “Elastic Frame 

Model with Damping Layer” as shown in 

Figure 5 than that for “High Stiffness Elastic 

Frame Model with Damping Layer” as shown 

in Figure 4. Using the proposed method, This 

phenomenon can be also explained roughly by 

Oberst expression [8] from theoretical analysis 

using complex flexural regidity for bending 

vibrations of a beam having a non-constraint 

type viscoelastic damping layer. Damping 

becomes low when neutral plane of the frame 

with viscoelastic layer is apart from the 

 
Figure 4:Strain energy distribution in 

steel frame for “High Stiffness Elastic 

Frame Model with Damping Layer” 

(Mode 16) 

 

 
Figure 5:Strain energy distribution in 

steel frame for “Elastic Frame Model 

with Damping Layer” (Mode 15) 

 

 
Figure 7:Fourier spectrum of impact response for 

“Elastic Frame Model” under small input 

 (
maxF = 0.98 N ) 

 

Figure 6:Time history of impact force 

 

 
Figure 8:Fourier spectrum of impact response for 

“Elastic Frame Model” under large input 

 (
maxF = 9.8×10

5
 N ) 
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damping layer. 

As we mentioned before, this model has 

the thick frame. Due to high stiffness of the 

frame, elastic deformations of the steel frame 

become very small in modes 1 to 6, which we 

can almost regard as rigid motions for the 

frame. This leads that modal loss factors for 

these modes are close to the value of the 

material loss factor s =0.100  of the springs. 

4.2 Results of impact responses 

By changing the maximum amplitude 

maxf of the impact as shown in Figure 6 

under a constant pulse width 0.001 [s], 

transient time histories are computed. In 

Figure 6, the ordinate Fd represents force 

amplitude, while the abscissa  shows time. 

And we evaluate displacement at the 

evaluation point on the frame as shown in 

Figure 1.  

(1) Results of “Elastic Frame Model” 

Figure 7 represents the frequency response 

function of a time history under the small 

impact force 
maxf = 0.98[N]. And Figure 8 

shows the frequency response function of the 

time history under the extraordinary large 

impact force 
maxf =9.8×10

5
[N]. In Figures 7 

and 8, the ordinate represents amplitude of 

frequency response function )( spfA ,while 

the abscissa shows Fourier frequency spf . As 

for (m) in Figure 7, m denotes m-th vibration 

mode. For (m, n) in Figure 8, m denotes m-th 

vibration mode and n denotes types of the 

frequency response function. For instance, 

n=3 shows super-harmonic component of the 

third order and n=1/2 represents sub- 

harmonic component of the 1/2 order. 0 [dB] 

represents the amplitude of the spectrum 

equals 1[mm] for )( spfA  in these figures.  

Under the small input force 
maxf =0.98 [N] 

in Figure 7, the peaks of the modes 1,2,5,7,9, 

10,11,13,15,16,17 and 20 appear in the 

 
Figure 9: Fourier spectrum of impact response for 

“Elastic Frame Model with Damping Layer” under 

small input ( maxF = 0.98 N ) 

 
Figure 10: Fourier spectrum of impact response for 

“Elastic Frame Model with Damping Layer” under 

large input ( maxF =9.8×10
5
 N ) 

 

 Figure 11: Fourier spectrum of impact response for 

“High Stiffness Elastic Frame Model with Damping 

Layer” under small input ( maxF = 0.98 N )  

 Figure 12: Fourier spectrum of impact response for 

“High Stiffness Elastic Frame Model with Damping 

Layer” under large input ( =9.8×10
5
 N ) 
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frequency response function mainly. Beacause excitation force in the z direction is acted on 

and the direction of observation is z, these modes include large amplitudes in the z direction.  

Due to small modal loss factors including large elastic deformations in the steel frame and 

small deformation in the springs with linear hysteresis, the peaks for modes from 10 to 20 

show sharp and have large amplitudes. 

Under the extraordinary large input force 
maxf =9.8×10

5
[N] in Figure 8, there exist many 

peaks (i.e. not only fundamental components but also super harmonic, subharmonic 

components and internal resonances) for modes including large deformation in the nonlinear 

springs in the frequency response function.  

(2) Results of “Elastic Frame Model with Damping Layer”  
We investigate of linear and nonlinear transient responses for “Elastic Frame Model with 

Damping Layer”. Figure 9 represents the frequency response function of a time history under 

the small impact force 
maxf = 0.98[N]. Figure 10 shows the frequency response function 

under the extraordinary large impact force 
maxf =9.8× 10

5
 [N].  

Under the small input force 
maxf = 0.98 [N] in Figure 9, the peaks of the modes 1,2,5,7,9, 

10,11,13,15,16,17 and 20 appear in the frequency response function like Figure 7 for the 

model without damping layer. However, the ampliudes decrease for the peaks for modes from 

10 to 20 including large deformations in the frame with damping layer. On the other hand, in 

comparison with Figure 7, there exist small changes in the peaks for modes 3,4 and 6 

including large deformation in the springs and small deformations in the frame.  

Under the extraordinary large input force 
maxf = 9.8× 10

5
 [N] in Figure 10, in comparison 

with Figure 8 for the model without damping layer, number of the nonlinear peaks decrease.  

Especially, due to higher damping, this phenomenon is outstanding for modes from 10 to 20 

including large deformation in the frame with the damping layer. Therefore, the damping 

layer enable us to diminish the nonlinear coupling in the transient response.  

(3) Results of “High Stiffness Elastic Frame Model with Damping Layer” 
Next, we investigate of the transient responses for “High Stiffness Elastic Frame Model 

with Damping Layer” and clarify influences of the stiffness of the steel frame on linear / 

nonlinear transient responses. As we stated previously in Section 4.1, modal loss factors of 

this model decrease due to high stiffness of the steel frame for modes 10 to 20 containing 

large deformations in the frame with the damping layer. Figure 11 represents the frequency 

response function of a time history under the small impact force 
maxf = 0.98[N]. Figure 12 

shows the frequency response function of a time history under the extraordinary large impact 

force 
maxf =9.8× 10

5
 [N].  

Under the small input force 
maxf = 0.98 [N] in Figure 11, the peaks of the modes 1,2,4,6,7, 

9,11,13,16 and 18 appear in the frequency response function like Figures 9 for “Elastic Frame 

Model with Damping Layer”. Nevertheless, the ampliudes increase for the peaks for modes 

from 10 to 20 including large deformations in the frame with damping layer. This 

phenomenon is caused by low modal loss factors of these modes due to high stiffness of the 

steel frame as we explained in section 4.1.  

Under the extraordinary large input force 
maxf = 9.8× 10

5
 [N] in Figure 12, in comparison 

with Figure 10 for the model without damping layer, number of the nonlinear peaks increase.  
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Especially, due to lower damping oriented from high stiffness of the steel frame, this 

phenomenon is notable for modes from 10 to 20 including large deformation in the frame 

with the damping layer. Therefore, if we increase the thickness of the steel frame, damping of 

the frame with the damping layer diminishes and this leads to magnify the nonlinear coupling 

in the transient response, concequently. 

5 CONCLUSIONS 

This paper describes vibration analysis using FEM for elastic frames with viscoelastic 

layers connected with multiple nonlinear springs with hysteresis. The restoring force of the 

spring is expressed as power series of its elongation. A complex spring constant is introduced 

for the linear component of the restoring force. The finite elements for the nonlinear spring 

are expressed and they are attached to the elastic / viscoelastic structures, which are modeled 

as solid finite elements with a complex modulus of elasticity. To get modal loss factors, we 

introduce small parameters concerning damping to complex eigenvalue problem of the 

equations under small deformation. And we obtain asymptotic equations from the zero and 

first orders. Then, the approximate modal loss factors are obtained like MSE. Further, by 

introducing normal coordinate corresponding to eigenmodes. the nonlinear discrete equations 

in physical coordinates are transformed into nonlinear ordinary coupled equations.  

We show phenomena including nonlinear coupled damped motions between nonlinear 

springs with hysteresis and elastic frames and viscoelastic layers by increasing impact force. 

Under a very large impact force as a severe condition, there exist complicated nonlinear 

couplings in Fourier spectrum. Due to high damping oriented from viscoelastic damping layer, 

nonlinear peaks are diminished. When we increase thickness of the steel frame, damping of 

the frame with the viscoelastic layer decrease. This causes the spectrum of the transient 

response includes more peaks due to nonlinear couplings. 
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