
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)
E. Oñate, J. Oliver and A. Huerta (Eds)

A DISCRETE ADJOINT VERSION OF AN UNSTEADY
INCOMPRESSIBLE SOLVER FOR OPENFOAM USING

ALGORITHMIC DIFFERENTIATION

A.Sen1, M.Towara2, and U.Naumann3

1 Software and Tools for Computational Engineering (STCE),
RWTH Aachen University 52062 Aachen, Germany

e-mail: sen@stce.rwth-aachen.de

2 STCE, e-mail: towara@stce.rwth-aachen.de

3 STCE, e-mail: naumann@stce.rwth-aachen.de

Key words: Discrete Adjoints, Algorithmic Differentiation, OpenFOAM, Unsteady Flow

Abstract. The comparatively low computational costs of adjoint based gradient methods
for optimization problems with a high number of degrees of freedom have allowed them to
become one of the most interesting approaches in CFD shape optimization. At the core
of such optimization techniques lies the computation of topology sensitivity maps. The
two most common approaches for computing adjoint based sensitivities are continuous
and discrete (or a combination of both). The continuous approach involves deriving
the adjoint equations analytically from the primal equations and then discretizing and
solving them alongside the primal equations. The discrete approach in contrast directly
differentiates the discretization and solution of the primal equations (basically the code of
the program is differentiated), leading to sensitivities consistent with the discretization.
The discrete approach has the distinct advantage of flexibility and robustness for a wide
range of optimization problems. Most industrial flows exhibit some degree of unsteadiness
which leads to lack of robustness and instability of steadily obtained adjoints. Thus
an unsteady adjoint is needed. While the continuous approach gets significantly more
complex by going from steady to unsteady (the adjoint equations cannot be just solved
in parallel to the primal equations any more, because the adjoint now depends on all time
steps, thus requiring to store intermediate values), the discrete approach (which had to
store the intermediate values already for the steady case) functionally stays the same.

In this paper, we present a discrete adjoint solver based on pisoFoam, an incompressible
transient solver of the widely used finite volume based open-source CFD tool OpenFOAM.
The sensitivity maps are generated by the algorithmic differentiation tool dco/c++.

1

A.Sen, M.Towara and U.Naumann

1 Introduction

The two principle methods for applying Algorithmic Differentiation [1] are source trans-
formation and operator overloading. dco/c++[2] uses the operator overloading approach.
Algorithmic Differentiation was applied to the whole OpenFOAM framework [3], an open-
source CFD software package, thus allowing it to introduce adjoint solvers by adapting
the existing primal ones. In this paper, we present the generic idea about how to obtain
a differentiated code from the existing solvers in OpenFOAM from scratch.

In section 2, we briefly discuss the OpenFOAM CFD package and the required back-
ground in CFD and AD to generate a differentiated code. In section 3 we talk about a
somewhat black-box implementation of AD to an existing unsteady incompressible solver
in OpenFOAM, pisoFoam. The discrete approach generates considerable overheads in
terms of runtime and memory requirements. Intermediate values from the whole itera-
tion history need to be stored in order to obtain the sensitivities. In Section 4, we also
look at effective techniques to tackle this by implementation of checkpointing schemes
(e.g. Revolve Algorithm [4]) and treatment of the inner iterative linear solvers used for
solving the underlying partial differential equations[5].

As a case study for our discrete adjoint unsteady solver we present the results of
sensitivity calculations of the flow around a cylinder leading to vortex shedding (see Fig
[5]). Different optimization objectives are feasible, e.g. topology optimization with respect
to pressure loss / flow uniformity or decreasing the vortices by applying active flow control
(blowing / suction) on the surface of the cylinder. This is a well studied problem (e.g.
[6]) and we intend to use this test case to verify our solver.

2 Background

2.1 The OpenFOAM CFD code

The OpenFOAM CFD code uses a numerical approach with a few core features which
aid in understanding the implementation of the code in C++.

1) The governing system of equations of our problem creates multiple matrix equations,
one for each individual equation as opposed to one big matrix equation for the entire
system of equations by decoupling them. They are solved within an iterative sequence.

2) The matrix equations mentioned in 1) are constructed using the Finite Volume
method [7].

3) The solution variable for each matrix equation is defined at cell center.
4) The coupling of equations like velocity and pressure are performed using well known

algorithms such as PISO [8] and SIMPLE [9].

The presented research is supported by the project About Flow, funded by the European Commis-
sion under FP7-PEOPLE-2012-ITN-317006.

2

A.Sen, M.Towara and U.Naumann

2.2 The primal Navier stokes equation

The primal equation that is tackled in the optimization problem is a variation of the
Navier Stokes equation with an additional term α, and the continuity equation:

∂v

∂t
+ (v · ∇)v = −∇p+∇ · (2νD(v))− αv (2.1)

∇ · v = 0 (2.2)

Here v denotes the velocity vector, p the pressure, ν the kinematic viscosity, and D(v)
is the rate of strain tensor. αv is the additional resistance term. This resistance term
comes in handy to penalize the velocity in individual cells in the discretized equations.
The basic objective is to locate cells where a reduction in velocity would help to reduce
the cost function. This approach has been discussed in considerable detail in [10].

2.3 Continuous vs Discrete Adjoints

In the continuous approach, an additional set of equations is derived from the set of
primal equations and their boundary conditions. This set of equations is then discretized
alongside the primal equations and solved simultaneously for the adjoint equivalents of
the flow variables. The cost function and subsequently the sensitivities are evaluated from
the primal and adjoint flow variables.[10]

With the discrete approach however, the cost function and the sensitivities are com-
puted directly from the discretization of the primal equations. Thus in this case, the
adjoints correspond to the results of the solution of primal equations only. Computing
adjoints via discrete approach gives us the distinct advantage of robustness and flexibility.
One can avoid the tedious job of deriving the adjoint equations by hand. This advantage
is achieved at the cost of considerable overheads in terms of time and memory require-
ments since it involves recording and interpreting all the intermediate steps of iteration.
In the subsequent sections, we shall look at ways to tackle this challenge.

2.4 The Cost function

Equations 2.1 and 2.2 are solved subject to a constraint that is brought about by
the minimization of cost function with respect to the design variables (α in this case) if
Topology optimization is desired. α is updated using a suitable optimization algorithm
(like steepest descent). In this paper the cost function used is:

J =

∫
τ

(p + 0.5ρv2)dτ (2.3)

Here τ denotes the inflow and outflow boundaries. Based on this, the sensitivities
dJ/dα are calculated.

3

A.Sen, M.Towara and U.Naumann

3 Implementation of Algorithmic differentiation in pisoFoam

3.1 Overloading OpenFOAM CFD code

A basic list of changes that needs to be implemented in OpenFOAM are:

1. All the related dco files are appropriately included or linked to.

2. Typically we overload all the Scalar and double data types with active dco::a1s::type.

Theoritically, we just need to recompile OpenFOAM at this point and we are ready.
However in practice, it is not so. Capabilities of dco have to be taken into account,
for example, dco does not support union. Therefore unions have to be replaced in the
OpenFOAM CFD code, suitably with the aid of structures. Also to avoid ambiguity of
data types, it is good practice to explicitly qualify the functions and variables with their
relevant namespaces.

3.2 Discrete adjoint version of pisoFoam

dco::a1s is a highly flexible and efficient implementation of adjoint Algorithmic differ-
entiation by operator overloading in C++. dco.hpp is the interface. The following steps
are undertaken to obtain the Discrete adjoint version of pisofoam, dadpisoFoam.C.

1. All variables are changed to active data type, dco::a1s::type. All operations are
overloaded to generate the intermediate representation of the computation in form
of a tape

2. Modification of the primal in pisoFoam.C to add the porosity term.

3. Memory allocation for the tape.

4. Initializing the cost functions

5. Registering the individual entries of alpha as inputs

6. Evaluation of the cost function

7. Calculating the sensitivities of J with respect to inputs alpha and reverse interpre-
tation of tape.

8. Retrieving the calculated sensitivities.

4

A.Sen, M.Towara and U.Naumann

4 Checkpointing

The spatial complexity of a reverse mode calculation is dependent on the temporal
complexity, i.e the memory requirement is proportional to the time complexity of the
evaluation of a function since all the intermediate steps need to be recorded. By the
method of checkpointing, we intend to manage the memory requirement of an adjoint
evaluation by paying the penalty in terns of runtime. The size of the tape which is used
to record the forward execution is kept in check by recording only parts of the forward
execution. By virtue of this only those parts recorded during the forward execution may
be interpreted during the revese mode execution. The missing information is generated
using recomputation. To effectively reduce the amount of function evaluations that are
required to be taped at one go, chekpoints are created. Checkpoints are snapshots at
particular time steps where a program state is stored, in OpenFOAM this essentially
means storing the velocity and pressure fields alongwith the mass fluxes. At this point it
is useful to mention that in explicit time-dependent problems which pisoFoam deals with,
each transformation with a counter that corresponds to discrete time can be referred
to as a time step. When there is no explicit time dependency (as is the case with the
implementation of simpleFoam), each pseudo-time step, that corresponds to propagation
from one state to another with a counter, then is considered a time step. Two methods
of checkpointing are discussed in principle, equidistant checkpointing and binomial offline
checkpointing, Revolve, as proposed by [4].

4.1 Equidistant Checkpointing

One of the methods of checkpointing employed here is equidistant, where checkpoints
are created at equal intervals between the start time and the last time step. This scheme
otherwise works quite well but it is not optimal in that it may require more repeated
forward time steps than actually needed for the reversal of the given number of time
steps for a fixed number of checkpoints. Also, it is noticed that by fixing the number of
checkpoints in this scheme (which essentially implies increasing the number of time steps
between the creation of two checkpoints), the time complexity tends to grow exponentially.
This drawback is overcome by implementation of the binomial checkpointing algorithm
using Revolve.

4.2 Binomial Offline Checkpointing, Revolve

To optimize the spatial and temporal complexity of the reverse mode, in effect ensuring
an efficient trade off between the two, it is important to dwell on the task of optimal
positioning of the checkpoints.

The operational difference between equidistant checkpointing and this mode of check-
pointing is illustrated in Fig 1 and 2 respectively. In Fig 1, during the reverse mode, the
checkpoints are not reused, whereas in Fig 2, as soon as a checkpoint becomes free, a
new checkpoint is created between the current time step and the last checkpointed step.

5

A.Sen, M.Towara and U.Naumann

Figure 1: Evaluation process using Equidistant checkpointing

The managing of the information at every checkpoint, i.e saving the system state at the
checkpoint and restoring it in order to repeat the subsequent computational steps when
required is essentially the same in the two schemes.

To apply this checkpointing scheme, the routine Revolve is used which sets the check-
points in a binomial fashion. To further read about the co-relation between the maximum
number of time steps, checkpoints and forward steps please refer [4]. For realization of
the checkpointing schedule with Revolve in the OpenFOAM solver, the following do-loop
is implemented in the reverse mode of evaluation:

0: Initialization: Reserve space for the given number of checkpoints and set the first
checkpoint to the initial state.

do end = final, 2, -1
1: Forward: Starting from the last checkpoint assigned advance to the last step but one

by performing forward time steps without recording the intermediates as in equidistant
checkpointing. Checkpoints are set at choosen intermediate steps.

2: Combined reverse: Perform a forward time step with recording of intermediates to
the last step and perform a reverse sweep to the last but one step to calculate the adjoints.
If the penultimate step is a checkpoint, it is freed for subsequent use. (This is where this
implementation differs from that of equidistant checkpointing, in the later, the collapse
of the tape takes place by freeing of checkpoints without reuse).

end do
In Fig. 3, growth in clocktime is plotted against the number of iterations for both

equidistant checkpointing and binomial checkpointing using Revolve. These results are
obtained for a fixed number of checkpoints in both the cases. The performance using Re-
volve is noticed to be significantly better than that of equidistant checkpointing. However
this drastic improvement in performance is only indicative, as by increasing the number
of checkpoints, the performance using the equidistant checkpointing scheme approaches
that using Revolve. If we checkpoint all the steps of the iteration, Revolve and equidistant
checkpointing are equivalent in terms of performance.

6

A.Sen, M.Towara and U.Naumann

Figure 2: Evaluation process using Revolve

4.3 Linear Solver treatment

The traditional discrete approach involves storing data in the forward run and inter-
preting it in the reverse run. However since most discrete based approaches are severely
memory bound, it is essential to look at alternatives. There are two possible methods
to tackle this issue. One of them is checkpointing, which is discussed in the previous
section. The other is to replace the computationally most expensive part, which often
is the linear solver, with a continuous computation of adjoints by solving a different set
of linear equations during the reverse run [5]. Of course in large size industrial cases,
need may arise to checkpoint even the linear solver by accepting a further hit in terms of
computation time.

Fig.4 gives an indicative performance improvement in terms of runtime that is achieved
by the linear solver treatment. This performance was achieved when the tolerance of the
reverse run was set to the same order as that of the forward run. Therefore it is within
the realms of possibility if we vary the tolerance such, for liner solver treatment to yeild

7

A.Sen, M.Towara and U.Naumann

Figure 3: No. of iterations vs Clocktime for Revolve and equidistant checkpointing

Table 1: Memory requirements using Linear Solver treatment

Solution mode UEqn tol. pEqn tol. Max. Tape memory
With Linear solver treatment 10−7 10−6 10 MB

Without Linear solver treatment 10−7 10−6 140 MB

to greater computational time than otherwise. However the major advantage is in terms
of the memory requirements as shown in Table 1. For the results presented in Fig 4 and
Table 1, the following settings are used:
U solver: BICCG, p solver: GAMG, No. of cells: 300.

5 Test Case

2D Flow over a cylinder resulting in vortex shredding is a widely studied case [6].
In this example the calculations were done at Re = 100. A relatively coarse mesh of
21730 cells was used to perform the simulation. The Boundary condition at the inlet is
Drichlet for velocity and von Newmann for pressure and vice versa at the outlet. The
cylinder walls are no slip but we allow slip at the far field. Fig.5 depicts the velocity
profile and sensitivity maps which are capped below zero, to potentially show the regions
where optimization may place material to build an optimized structure which is the best
compromise for all time steps.The cost function. shown in Eq. 2.3 is evaluated and
summed up at every time step over a period of 5 seconds, thus capturing the unsteady
nature of the problem. The sensitivities are symmetric along the y-axis.

8

A.Sen, M.Towara and U.Naumann

Figure 4: Improvement in terms of computation time achieved via linear solver treatment. During
the forward run, the same set of linear equations are solved passively, hence the clocktime is the same,
however during reverse run, the effect of the linear solver treatment can be noticed.

Figure 5: The velocity profile and sensitivity plot for the test case

6 Future Work

In this paper a method to obtain an adjoint solver based on an unsteady OpenFOAM
solver is outlined. Since discrete based methods are severely memory and time bound,
methods to tackle these challenges have been discussed. Further work may involve Topol-
ogy optimization for turbulent cases. Binomial offline checkpointing scheme may further
be developed to employ Multistage checkpointing using Revolve, a scheme which uses
checkpoints both in memory and disk, when the cost of storing/retrieving checkpoints
from disc is not negligible. Also to cover a wider range of CFD problems that often
require adaptive mesh generation and employ strategies like remeshing or refinement,
problems in which the knowledge of the complete forward solution is not known apriori,
online checkpointing scheme yields optimal or near optimal checkpointing distribution.

9

A.Sen, M.Towara and U.Naumann

REFERENCES

1. A. Griewank and A. Walther, Evaluating Derivatives Principles and Techniques of
Algorithmic Differentiation, Second Edition, SIAM, 2008

2. J. Lotz, K. Leppkes, and U. Naumann, dco/c++ - Derivative Code by Overloading
in C++, Aachener Informatik-Berichte (AIB), 2011.

3. M.Towara and U.Naumann, A Discrete Adjoint Model for OpenFOAM, Procedia
Computer Science, vol. 18, pp. 429-438, 2013.

4. A. Griewank and A. Walther, Algorithm 799: revolve: an implementation of check-
pointing for the reverse or adjoint mode of computational differentiation, ACM
Transactions on Mathematical Software, vol. 26(1), pp. 1945, 2000.

5. M. Giles, Collected Matrix Derivative Results for Forward and Reverse Mode Algo-
rithmic Differentiation, Advances in Algorithmic Differentiation, Springer 2008

6. O. Marquet and D. Sipp, Active steady control of vortex shedding: an adjoint-based
sensitivity approach, Seventh IUTAM Symposium on Laminar-Turbulent Transition,
Springer Netherlands , 2010

7. C.J. Greenshields, H.G. Weller, and A. Ivankovic, The finite volume method for
coupled fluid flow and stress analysis, Computer modelling and simulation in engi-
neering, 4:213-218, 1999.

8. R. I. Issa, Solution of the Implicitly Discretized Fluid Flow Equation by Operator
Splitting, J. Comput. Phys., vol. 62, pp. 40-65, 1986.

9. S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Corp.,
1980 - adsabs.harvard.edu, pp. 210, 1980.

10. C. Othmer, A continuous adjoint formulation for the computation of topological and
surface sensitivities of ducted flows, International Journal for Numerical Methods
in Fluids, vol. 58 (8), pp. 861877, 2008.

10

