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Abstract. Orthotropic bridges are widely used in today’s street infrastructure, especially when 
large spans have to be bridged. They consist of steel deckplates with attached – typically 
longitudinal – steel stiffeners and transverse cross-beams. In order to alleviate the stress at the 
welding joints of the stiffeners and the deckplate a polyurethane and steel sandwich design is 
investigated. For the purpose of making accurate predictions for this construction, the 
orthotropic plate is modelled using solid-cube as well as recently developed solid-shell and 
solid-beam element formulations. These are 8-node reduced integration elements with a 
variable amount of integration points in one (solid-shell) or two axes (solid-beam) which 
feature assumed natural strain (ANS) and enhanced assumed strain (EAS) concepts to tackle 
different kinds of locking – one example being volumetric locking which happens with near-
incompressible materials such as polyurethane. The implemented adaptive hourglass 
stabilization scheme avoids zero-energy hourglass deformation modes. A numerical 
investigation was carried out and the numerical displacement predictions were within 5% of 
the experimental results. The predictions of the developed solid elements were generally 
better than that of the Abaqus standard elements, even for very fine meshes. 

 
1 INTRODUCTION 

Unfortunately many existing orthotropic bridges do not concur with today’s best practices. 
Typically the recommended minimum thickness of the steel and asphalt layer is not met and 
the largest allowable stiffener separation is exceeded. These shortcomings usually manifest in 
cracks and failure of the welded connection between the deckplate and the stiffeners. 
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The described premature failure of orthotropic bridges creates a demand for refurbishment 
and improvement of the existing bridges. One possible solution is the sandwich plate system 
(SPS). This system consists of two steel plates with a polyurethane core in between. Extensive 
measurements of specimen with various geometries were carried out in a previous research 
project [1]. The chosen geometry was afterwards applied to a German motorway under severe 
traffic. 

Previously the numerical prediction of the plates was done using a “quasi-3-D”-model in 
which 4-node shell elements were linked with trusses forming a cantilever beam. The distance 
of the shells represented the thickness of the entire plate, i.e. of all 3 layers. The stiffness of 
the trusses and shells were chosen such that they approximate the shear and bending stiffness 
of the composite. The described approach led to predictions which were in good agreement 
with the experimental results. 

The drawback of this method is that the mechanical properties of the composite have to be 
known, the material parameters of the constituents and the geometry alone are not sufficient. 
This is a consequence of each truss geometrically representing multiple layers. It is unclear 
whether introducing shells at each layer interface and trusses between all the neighbouring 
shells could alleviate this restriction. Even if the truss stiffness could be derived directly from 
material parameters and geometry rather than from a parameter fit, other problems still 
remain. For instance, implementing full 3-D material models is difficult since trusses are 1-D 
elements and shells are 2-D elements. Other problems arise in the context of large 
deformations. 

The solid-cube, solid-shell and solid-beam elements allow the separate modelling of each 
layer with its physical thickness and material properties, thus avoiding the “smearing” of 
mechanical and structural parameters, see Figure 1. 
 
 
 

 
 

 
Figure 1: Comparison of the plate geometry and its FE representations. 
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2 Q1STX ELEMENT 

Very comprehensible and detailed overviews of the underlying theory for the solid-shell 
and solid-beam element formulations are provided in [2] and [3]. A brief summary of the 
main aspects is provided in the following. 

Solid cube, solid-shell and solid-beam elements have in common that they are 8 node 
elements with linear isoparametric ansatz functions and reduced integration. The solid-shell 
element has a user-defined number of integration points along the shell axis as depicted in 
Figure 2. Similarly the solid-beam element has its integration points in the plane 
perpendicular to the beam axis. The solid-cube element is then the trivial case of solid-shell 
and solid-beam element where the number of integration points per axis is equal to one. 

 

 
Figure 2: From left to right: solid-cube (Q1STc), solid-shell (Q1STs) and solid-beam (Q1STb). Black points 

represent nodes and grey points represent integration points.  

These three formulations are combined in the Q1STx element. The „x“ in Q1STx indicates 
that the element can be used as a solid-cube, solid-shell or solid-beam element, denoted by 
Q1STc, Q1STs and Q1STb respectively. 

As previously mentioned there are several locking phenomena which need to be treated if 
the element formulation is to give accurate results. 

In order to address curvature thickness locking and transverse shear locking the assumed 
natural strain method (ANS) is used. Curvature thickness locking stems from incorrect 
thickness discretization which results in an overestimation of transverse normal strains. 
Transverse shear locking is a result of the linear ansatz function’s inability to resolve element 
curvature. The proper cross-section of a bended element can only be resolved at the ends of 
the element. Instead of proper curvature, the bending is therefore represented by a trapezoidal 
deformation which leads to unphysical transverse shear strains.  

However, ANS cannot cure all locking phenomena. Volumetric locking – as it happens 
with nearly incompressible materials such as the polyurethane core investigated in this paper 
– is tackled by using the enhanced assumed strain (EAS) concept. Volumetric locking leads to 
too stiff structural responses which manifest in an overestimation of stresses and an 
underestimation of strains. 

EAS can also take care of Poisson thickness locking and enable a trapezoidal deformation 
mode of the beam plane caused by in plane strains in bending situations. 

Since the Q1STx is a reduced integration element, hourglassing is generally a problem. 
The zero-energy modes stemming from hourglass deformation modes are addressed by an 
adaptive hourglass stabilization scheme. 
The aforementioned features make the Q1STx very suitable for sandwich constructions which 
are usually characterized by multiple stacked layers of varying but generally small thickness 
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compared to other dimensions. Since the Q1STx is proper volume element, even complex 
geometries as the one investigated in this study can be realized since a coupling of shells 
beams and cubes is as straightforward as with any other volume element. 
One problem which arises in these complex geometries, however, is the assignment of the 
proper element type to each individual element. For irregular geometries cube, shell and beam 
elements are typically not occurring in separate regions but are rather scattered over the entire 
domain. Especially for irregular geometries a generally valid criterion to determine when an 
element should be a cube, shell or beam is not easily obtained. For instance the ratio of the 
shortest to the longest edge of the element – which many FEA tools provide the user with – is 
not necessarily very conclusive in this question. Although this criterion is useful for elements 
of approximately cuboid shape, it is misleading for elements of e.g. trapezoidal shape, which 
can have a high ratio of shortest to longest edge without being reasonable candidates for the 
use of a shell element formulation. This makes it challenging to assign the element type 
manually even if there was an inclination to do so. What is more, the aspect ratio changes 
with each step of mesh refinement which necessitates the repetition of the chosen procedure 
every time the mesh is changed. 

For this reason the Q1STx code was modified to enable automatic element type selection 
based on the aspect ratio of the element in the reference configuration. In the current version 
the Q1STx is called with a slenderness parameter and the number of quadrature points per 
space dimension. This leaves the formulation open at the time the input file is created. In 
order to determine the aspect ratio ߩ, the eigenvalues ߣ of the element Jacobian at the 
element center ࡶ multiplied with its transpose, are evaluated. 

ࡶ ൌ
ࢄ߲
ࣈ߲
ฬ
ୀࣈ

 
(1)

det൫ࡶ
ࡶ் െ ൯ࡵߣ ൌ 0 (2)

Here ࢄ denotes the element reference coordinates and  ࣈ denotes the natural element 
coordinates. The square roots of the eigenvalues ඥߣ are equal to the singular values of a 
singular value decomposition of ࡶ [4]. 

ࡶ ൌ ∗ࢂࢳࢁ (3)

ࡶ
ࡶ் ൌ ሺࢁࢀࢳࢂ∗ሻ ∙ ሺࢂࢳࢁ∗ሻ ൌ (4) ∗ࢂࢳࢀࢳࢂ

Here ࢁ and ࢂ are unitary matrices and ࢁ∗ and ࢂ∗ are the associated conjugate transpose 
matrices. ࢳ is the matrix containing the singular values. The singular values can be interpreted 
geometrically as stretches. 

This means that ඥߣ is a measure of how much the i-th element axis is stretched when it is 
mapped to the natural coordinate system axis. Since the natural coordinate axes always have a 
constant length of 2, the ratio of the eigenvalue square roots corresponds to the ratio of the 
element axes in the reference configuration. 

The element type is determined by comparing singular values of the Jacobian at the 
element center. If two singular values are at least ߩ times greater than the third singular value 
Q1STs is selected, that is the quadrature point space dimension is set to one. If one singular 
value is at least ߩ times greater than the other two singular values, Q1STb is selected, that is 
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the quadrature point space dimension is set to two. If no singular value is at least ρ times 
greater than one of the others Q1STc is selected, i.e. that is the quadrature point space 
dimension is set equal to zero, leaving just one integration point at the element center, see 
Figure 2. 

3 EXPERIMENTAL AND FINITE ELEMENT SETUP 

The bridge design is modular with a fixed width and variable lengths depending on how 
many plates are connected in longitudinal direction, i.e. driving direction, see Figure 3. 

 

 
Figure 3: Technical drawing of the orthotropic plate. The driving direction is marked with the big arrow. The 

loading area is marked with parallel small arrows. The single short arrow with the “x” indicates the abscissa for 
Figures 7 to 12.  

The model was meshed in three degrees of fineness. The details of the refinement levels 
are given in Table 1. 
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Table 1: Overview of the mesh parameters. 

 coarse mesh medium mesh fine mesh truss model 
number of 
elements 

5340 22476 365988 31648 

number of nodes 8334 34131 451458 30768 + 
unreported 
number of 
interim nodes 

number of nodes 
on which 
external forces 
are acting 

21 27 225 unknown 

The medium mesh on which this study focuses is depicted in some detail in Figure 4. 

 

 
Figure 4 Detail of the medium mesh. The dark layer represents the core layer.  

The element assignment provided by the proposed algorithm is shown in Figure 5. QDPSD 
refers to the QuaDrature Point Space Dimension (0 cube, 1 shell, 2 beam). 
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Figure 5 Element type assignment according to automatic element selection algorithm with ρ = 3 for the 

medium mesh. 

The element assignment agrees very well with intuition.  
 
 

 
Figure 6: Element type assignments for the different mesh cases and slenderness ratios in percent. 

In this study the mesh refinement was done in such a way that the element ratio would not 
change too much at a given reasonable choice of ߩ. This can for instance be observed when 
the element type distribution of the coarse mesh for ߩ ൌ 2.5 and the element type distribution 
of the medium mesh for ߩ ൌ 3 is compared, see Figure 6. The percentage of cubes increases 
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as ߩ is increased. ߩ values between 2.5 and 5 were found to provide the most agreeable 
results. 

4 RESULTS AND VALIDATION 

A variety of quantities were measured experimentally. The numerical investigation focuses 
on the deflection of the centerline of the orthotropic plate since this is the quantity for which 
the most experimental data is available. 

The results of the coarse mesh for several element types are shown in Figure 7. All used 
element types underestimate the occurring displacement. The relative error of the Q1STx 
elements is considerably lower than that of the Abaqus standard elements C3D8 and C3D8R, 
see Figure 8. 

 
Figure 7: Deflection at the centerline, coarse mesh. P=100 kN. The vertical red lines mark the area to which the 

load was applied. 

Two different values for the slenderness ratio were investigated. The accuracy of the 
element with the lower slenderness ratio was better in this case. The reason for this is that at 
ߩ ൌ 20 approximately 45% of the elements are cubes and only 5% are shells, see Figure 6. 
Nonetheless, the Q1STx still outperforms the standard elements distinctly, see Figure 8. This 
is possibly due to the extensive treatment of locking in the Q1STx formulation.   
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Figure 8: Relative error of the predicted deflection along the centerline compared with the experimental result, 

coarse mesh. P=100 kN. The vertical red lines mark the area to which the load was applied. 

The accuracy of the prediction for the medium mesh is very good for the Q1STx and the 
truss model. In nominal terms both the truss model and the Q1STx perform very well, see 
Figure 9. The C3D8R, which underestimated the deflections for the coarse mesh, 
overestimates the deflections for the medium mesh.  

 
Figure 9: Deflection at the centerline, medium mesh. P=100 kN. The vertical red lines mark the area to which 

the load was applied. 
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The relative error of the C3D8R elements has significantly decreased but is still not quite 
satisfactory. The Q1STx and the truss model are also close in terms of relative error, see 
Figure 10.  

 

 Figure 10: Relative error of the predicted deflection along the centerline compared with the experimental result, 
medium mesh. P=100 kN. The vertical red lines mark the area to which the load was applied. 

For the fine mesh the Q1STx performs very well. The C3D8R also predicts the result with 
reasonable accuracy except for the region where the load is applied and the deformations are 
the highest, see Figure 11. 
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Figure 11: Deflection at the centerline, medium mesh. P=100 kN. The vertical red lines mark the area to which 
the load was applied. 

The C3D8 accuracy is not as good, see Figure 12. The mesh may not be converged for that 
element type yet or locking may prevent convergence to the correct result altogether. 

 

Figure 12: : Relative error of the predicted deflection along the centerline compared with the experimental 
result, fine mesh. P=100 kN. (The vertical red lines mark the area to which the load was applied. 
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5 CONCLUSION 

With the proposed element formulation the centerline deflections of the orthotropic plate 
were predicted within 5% of the experimental result for a mesh consisting of 22476 elements.  

Q1STx elements showed superior convergence behaviour compared with C3D8 and 
C3D8R elements. The Q1STx model was converged for 22476 elements. The C3D8R model 
was converged except for high deformation regions at 365988 elements. No satisfactory 
prediction could be made with C3D8 elements for any of the investigated meshes. 

The accuracy of the previous numerical predictions made with a truss and shell cantilever-
like model could be matched with a similar number of elements. The advantage of the new 
more general approach is that it needs only minimal adjustment for other more general 
sandwich problems. 

Element type selection was performed automatically using an algorithm that determines 
the element type based on the aspect ratio of the element. The element assignments produced 
by this approach were consistent with intuition and led to the aforementioned good 
convergence and result accuracy. The user effort required was minimal since only the 
slenderness ratio and the number of integration points per space direction had to be specified. 
Slenderness ratios between 2.5 and 5 provided the most agreeable results in this example. 
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