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Abstract. We study the electromechanical behavior of a thin interphase, constituted
by a linearly piezoelectric anisotropic material with high rigidity, embedded between
two generic three-dimensional piezoelectric bodies by means of the asymptotic expansion
method. After defining a small real dimensionless parameter ε, which will tend to zero,
we characterize the limit model and the associated limit problem. Moreover, we identify
the non classical electromechanical transmission conditions at the interface between the
two three-dimensional bodies.

1 INTRODUCTION

In the last decades the use of smart materials in aeronautical, mechanical and civil
engineering has provided a new degree of design flexibility for advanced composite struc-
tural members. This kind of technology is based on the ability to allow the structure
to sense and react in a desired fashion, improving its performances. The new concept of
adaptive structure requires, for instance, the use of piezoelectric sensors and actuators for
controlling the mechanical behavior of structural systems. Piezoelectric materials may
be integrated into a host structure to change its shape and to enhance its mechanical
properties with different configurations: for instance, a piezoelectric transducer can be
embedded into the structure to be controlled or it can be glued on it, as in the case of
piezo-patches. Moreover, the same piezoelectric actuators are often obtained by alternat-
ing different thin layers of material with highly contrasted electromechanical properties.
This generates different types of complex multimaterial assemblies, in which each phase
interacts with the others.

The successful application of the asymptotic methods to obtain a mathematical justi-
fication of linear and non linear plate models in elasticity [1] has stimulated the research
toward a rational simplification of the modeling of complex structures obtained joining
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elements of different dimensions and/or materials of highly contrasted properties. The
asymptotic analysis has been also used to formally derive simplified models for piezo-
electric plates, taking into account both sensor and actuator functions, see, for instance,
[2, 3, 4], as well as pyroelectric and pyroelastic effects, see [5]. The direct solution of
a complex multimaterial problem by a standard finite element method is too expensive
from a computational point of view and the presence of strong contrasts in the geometry
and mechanical properties causes numerical instabilities. That is why specific asymptotic
expansions are used and allow to replace the original problem by a set of problems in
which the thin layer, for instance, is substituted by a two-dimensional surface. The thin
inclusion of a third material between two other ones when the rigidity properties of the
inclusion are highly contrasted with respect to those of the surrounding materials has
been deeply investigated in different functional frameworks in the case of linear elasticity,
see [6, 7, 8], and, also, in the case of thin conductor plates embedded into a piezoelectric
matrix [9].

In this work we consider a particular piezoelectric assembly, constituted by two generic
three-dimensional piezoelectric bodies separated by a thin piezoelectric interphase with
high rigidity. By defining a small real parameter ε, associated with the thickness and the
electromechanical properties of the middle layer, we perform an asymptotic analysis by
letting ε tend to zero, following the approach by P.G. Ciarlet [1]. Then we characterize the
limit model and its associated limit problem. Within the reduced model the intermediate
interphase “disappears” and it is replaced by a specific electromechanical surface energy
defined over the middle plane of the plate. This surface energy is then traduced in ad hoc
transmission conditions at the interface between the two piezoelectric bodies in terms of
the jump of stresses, electric displacements and electric potentials.

The paper is organized as follows. In Section 2 we define the notation and the position
of the problem. The limit model is then deduced through an asymptotic analysis, as
shown in Section 3. In Section 4 we determine the electromechanical interface problem.

2 THE PHYSICAL PROBLEM

In the sequel, Greek indices range in the set {1, 2}, Latin indices range in the set
{1, 2, 3}, and the Einstein’s summation convention with respect to the repeated indices is
adopted.

Let us consider a three-dimensional Euclidian space identified by R
3 and such that the

three vectors ei form an orthonormal basis. Let Ω+ and Ω− be two disjoint open domains
with smooth boundaries ∂Ω+ and ∂Ω−. Let ω := {∂Ω+ ∩ ∂Ω−}

◦
be the interior of the

common part of the boundaries which is assumed to be a non empty domain in R
2 having

a positive two-dimensional measure. We consider the assembly constituted by two solids
bonded together by an intermediate thin plate-like body Ωm,ε of thickness 2hε, where
0 < ε < 1 is a dimensionless small real parameter which will tend to zero. We suppose
that the thickness hε of the middle layer depends linearly on ε, so that hε = εh.

More precisely, we denote respectively with Ω±,ε := {xε := x ± εhe3; x ∈ Ω±}, the
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Figure 1: The reference configuration of the multimaterial and the geometry of the interphase.

translation of Ω+ (resp. Ω−) along the direction e3 (resp. −e3 ) of the quantity εh, with
Ωm,ε := ω × (−εh, εh), the central plate-like domain, and with Ωε := Ω+,ε ∪ Ωm,ε ∪ Ω−,ε,
the reference configuration of the assembly.

Moreover, we define with S±,ε := ω × {±εh} = Ω±,ε ∩Ωm,ε, the upper and lower faces
of the intermediate plate-like domain, Γ±,ε := ∂Ω±,ε/S±,ε, and Γm,εlat := ∂ω × (−εh, εh),
its lateral surface, see Figure 1.

Let (ΓεmD,Γ
ε
mN) and (ΓεeD,Γ

ε
eN) be two suitable partitions of ∂Ωε := Γ±,ε ∪ Γm,εlat , with

both ΓεmD and ΓεeD of strictly positive Lebesgue measure. The multimaterial is, on one
hand, clamped along ΓεmD and at an electrical potential ϕε0 = 0 on ΓεeD and, on the other
hand, subject to surface forces gεi on ΓεmN and electrical displacement dε on ΓεeN . The
assembly is also subject to body forces f εi and electrical loadings F ε acting in Ω±,ε. We
suppose, without loss of generality, that Ωm,ε and Γm,εlat are both free of mechanical and
electrical charges. The work of the external electromechanical loadings takes then the
following form:

Lε(rε) :=

∫

Ω±,ε

(f εi v
ε
i + F εψε)dxε +

∫

Γε
mN

gεi v
ε
i dΓ

ε +

∫

Γε
eN

dεψεdΓε

We suppose that f εi ∈ L2(Ω±,ε), F ε ∈ L2(Ω±,ε), gεi ∈ L2(ΓεmN) and d
ε ∈ L2(ΓεeN). We fi-

nally assume that Ω±,ε and Ωm,ε are constituted by two homogeneous linearly piezoelectric
materials, whose constitutive laws are defined as follows:

{
σεij(u

ε, ϕε) = Cε
ijkℓe

ε
kℓ(u

ε)− P ε
kijE

ε
k(ϕ

ε),

Dε
i (u

ε, ϕε) = P ε
ijke

ε
jk(u

ε) +Hε
ijE

ε
j (ϕ

ε),

where (σεij) is the classical Cauchy stress tensor, (eεij(u
ε)) :=

(
1
2
(∂εi u

ε
j + ∂εju

ε
i )
)
is the lin-

earized strain tensor, (Dε
i ) is the electrical displacement field, ϕε is the electrical potential
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and Eε
i (ϕ

ε) := −∂εiϕ
ε its associated electrical field. (Cε

ijkℓ), (P
ε
ijk) and (Hε

ij) represent, re-
spectively, the classical fourth order elasticity tensor, the third order piezoelectric coupling
tensor and the second order dielectric tensor related to Ω±,ε and Ωm,ε.

Tensors (Cε
ijkℓ), (H

ε
ij) and (P ε

ijk) satisfy the following coercivity properties: for any sym-
metric matrix field (bij), there exists a constant c > 0 such that Cε

ijkℓbkℓbij ≥ c
∑

i,j |bij|
2;

for any vector field (ai), there exists a constant c > 0 such that Hε
ijajai ≥ c

∑
i |ai|

2.
Moreover, we have the symmetries Cε

ijkℓ = Cε
kℓij = Cε

jikℓ, H
ε
ij = Hε

ji and P
ε
kji = P ε

kij.
The electromechanical state at the equilibrium is determined by the pair sε := (uε, ϕε).

We define the functional spaces

Vε(Ωε,Γε) := {vε ∈ H1(Ωε;R3); vε = 0 on Γε},
V ε(Ωε,Γε) := {vε ∈ H1(Ωε); vε = 0 on Γε}.

The physical variational problem Pε defined over the variable domain Ωε reads as follows:

{
Find sε ∈ Vε(Ωε,ΓεmD)× V ε(Ωε,ΓεeD) such that
A−,ε(sε, rε) + A+,ε(sε, rε) + Am,ε(sε, rε) = Lε(rε),

(1)

for all rε ∈ Vε(Ωε,ΓεmD) × V ε(Ωε,ΓεeD), where the bilinear forms A±,ε(·, ·) and Am,ε(·, ·)
are defined by

A±,ε(sε, rε) :=

∫

Ω±,ε

{
C±,ε
ijkℓe

ε
kℓ(u

ε)eεij(v
ε) +H±,ε

ij Eε
j (ϕ

ε)Eε
i (ψ

ε)+

+ P±,ε
ihk (E

ε
i (ψ

ε)eεhk(u
ε)− Eε

i (ϕ
ε)eεhk(v

ε))
}
dxε,

Am,ε(sε, rε) :=

∫

Ωm,ε

{
Cm,ε
ijkℓe

ε
kℓ(u

ε)eεij(v
ε) +Hm,ε

ij Eε
j (ϕ

ε)Eε
i (ψ

ε)+

+ Pm,ε
ihk (E

ε
i (ψ

ε)eεhk(u
ε)−Eε

i (ϕ
ε)eεhk(v

ε))} dxε.

By virtue of the Vε(Ωε,ΓεmD) × V ε(Ωε,ΓεeD)-coercivity of the bilinear forms and thanks
to the Lax-Milgram lemma, problem (1) admits one and only one solution.

3 ASYMPTOTIC ANALYSIS

In order to study the asymptotic behavior of the solution of problem (1) when ε tends
to zero, we rewrite the problem on a fixed domain Ω independent of ε. By using the
approach of [1], we consider the bijection πε : x ∈ Ω 7→ xε ∈ Ω

ε
given by





πε(x1, x2, x3) = (x1, x2, x3 − (1− εh)), for all x ∈ Ω
+

tr,

πε(x1, x2, x3) = (x1, x2, εx3), for all x ∈ Ω
m
,

πε(x1, x2, x3) = (x1, x2, x3 + (1− εh)), for all x ∈ Ω
−

tr,

where Ω±

tr := {x ± e3, x ∈ Ω±}, Ωm := ω × (−h, h) and S± := ω × {±h}. In order

to simplify the notation, we identify Ω±

tr with Ω±, and Ω with Ω
±

∪ Ω
m
. Likewise, we
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note Γ± := ∂Ω±/S±, Γmlat := ∂ω × (−h, h), (ΓmD,ΓmN) and (ΓeD,ΓeN), the partitions of
∂Ω := Γ± ∪ Γmlat.

Consequently, ∂εα = ∂α and ∂ε3 = 1
ε
∂3 in Ωm.

With the unknown electromechanical state sε = (uε, ϕε), we associate the scaled un-
known electromechanical state s(ε) := (u(ε), ϕ(ε)) defined by:

uεα(x
ε) = uα(ε)(x) and u

ε
3(x

ε) = ε−1u3(ε)(x) for all xε = πεx ∈ Ω
m,ε
,

ϕε(xε) = εϕ(ε)(x) for all xε = πεx ∈ Ω
m,ε
.

We likewise associate with any test functions rε = (vε, ψε), the scaled test functions
r = (v, ψ), defined by the scalings:

vεα(x
ε) = vα(x) and v

ε
3(x

ε) = ε−1v3(x) for all xε = πεx ∈ Ω
m,ε
,

ψε(xε) = εψ(x) for all xε = πεx ∈ Ω
m,ε
.

For ε sufficiently small, we associate with the constant functions C±,ε
ijkℓ, H

±,ε
ij , P±,ε

ijk :

Ω
±,ε

→ R the constant functions C±

ijkℓ, H
±

ij , P
±

ijk : Ω
±

→ R defined by

C±,ε
ijkℓ := C±

ijkℓ, H±,ε
ij := H±

ij , P±,ε
ijk := P±

ijk for all xε = πε(x) ∈ Ω
±,ε
,

and we associate with the constant functions Cm,ε
ijkℓ, H

m,ε
ij , Pm,ε

ijk : Ω
m,ε

→ R the constant

functions Cm
ijkℓ, H

m
ij , P

m
ijk : Ω

m
→ R defined by

Cm,ε
ijkℓ :=

1
ε
Cm
ijkℓ, Hm,ε

ij := 1
ε
Hm
ij , Pm,ε

ijk := 1
ε
Pm
ijk for all xε = πε(x) ∈ Ω

m,ε
.

We also make the following assumptions on the applied mechanical and electrical forces:

f εi (x
ε) = fi(x) and gεi (x

ε) = gi(x) for all xε = πεx ∈ Ω
±,ε
,

F ε(xε) = F (x) and dε(xε) = d(x) for all xε = πεx ∈ Ω
±,ε
,

where functions fi ∈ L2(Ω±), F ∈ L2(Ω±), gi ∈ L2(ΓmN) and d ∈ L2(ΓeN) are indepen-
dent of ε. Thus Lε(rε) = L(r).

We define the spaces

V(Ω,Γ) := {v ∈ H1(Ω;R3); v = 0 on Γ},
V (Ω,Γ) := {v ∈ H1(Ω); v = 0 on Γ}.

According to the previous assumptions, problem (1) can be reformulated on a fixed domain
Ω independent of ε. Thus we obtain the following scaled problem P(ε):

{
Find s(ε) ∈ V(Ω,ΓmD)× V (Ω,ΓeD) such that
A−(s(ε), r) + A+(s(ε), r) + Am(ε)(s(ε), r) = L(r),

(2)
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for all r ∈ V(Ω,ΓmD) × V (Ω,ΓeD), where the bilinear forms A±(·, ·) and Am(ε)(·, ·) are
given by

A±(s(ε), r) :=

∫

Ω±

{
C±

ijkℓekℓ(u(ε))eij(v) +H±

ij∂jϕ(ε)∂iψ+

+ P±

ihk(Ei(ψ)ehk(u(ε))− Ei(ϕ(ε))ehk(v))
}
dx,

Am(ε)(s(ε), r) := 1
ε4
am
−4(s(ε), r) +

1
ε3
am
−3(s(ε), r) +

1
ε2
am
−2(s(ε), r) +

1
ε
am
−1(s(ε), r)+

+am0 (s(ε), r) + εam1 (s(ε), r) + ε2am2 (s(ε), r),

with

am
−4(s, r) :=

∫

Ωm

Cm
3333e33(u)e33(v)dx,

am
−3(s, r) :=

∫

Ωm

2Cm
α333(e33(u)eα3(v) + eα3(u)e33(v))dx,

am
−2(s, r) :=

∫

Ωm

{
Cm
αβ33(e33(u)eαβ(v) + eαβ(u)e33(v)) + 4Cm

α3β3eα3(u)eβ3(v)+

+Pm
333(∂3ϕe33(v)− e33(u)∂3ψ)}dx,

am
−1(s, r) :=

∫

Ωm

{2Cm
αβσ3(eσ3(u)eαβ(v) + eαβ(u)eσ3(v)) + Pm

α33(∂αϕe33(v)− e33(u)∂αψ)+

+2Pm
3α3(∂3ϕeα3(v)− eα3(u)∂3ψ)}dx,

am0 (s, r) :=

∫

Ωm

{Cm
αβστeστ (u)eαβ(v) + 2Pm

αβ3(∂αϕeβ3(v)− eβ3(u)∂αψ) +Hm
33∂3ϕ∂3ψ+

+Pm
3αβ(∂3ϕeαβ(v)− eαβ(u)∂3ψ)}dx,

am1 (s, r) :=

∫

Ωm

{
Pm
αβσ(∂αϕeβσ(v)− eβσ(u)∂αψ) +Hm

α3(∂αϕ∂3ψ + ∂αψ∂3ϕ)
}
dx,

am2 (s, r) :=

∫

Ωm

Hm
αβ∂βϕ∂αψdx.

The rescaled variational problem (2) has a unique solution in V(Ω,ΓmD)× V (Ω,ΓeD)
by virtue of the Lax-Milgram lemma. In the sequel, only if necessary, we will note,
respectively, with (v±, ψ±) and (vm, ψm), the restrictions of functions (v, ψ) to Ω± and
Ωm.

We can now perform an asymptotic analysis of the rescaled problem (2). Since the
rescaled problem (2) has a polynomial structure with respect to the small parameter ε,
we can look for the solution s(ε) = (u(ε), ϕ(ε)) of the problem as a series of powers of ε:

s(ε) = s0 + εs1 + ε2s2 + . . . ⇒

{
u(ε) = u0 + εu1 + ε2u2 + . . .
ϕ(ε) = ϕ0 + εϕ1 + ε2ϕ2 + . . .

, (3)

with sq = (uq, ϕq) ∈ V(Ω,ΓmD)× V (Ω,ΓeD), q ≥ 0. By substituting (3) into the rescaled
problem (2), and by identifying the terms with identical power of ε, we obtain, as cus-
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tomary, a set of variational problems to be solved in order to characterize the limit elec-
tromechanical state s0 = (u0, ϕ0) and its associated limit problem.

3.1 The limit model

When dealing with the asymptotic models for piezoelectric plates, the scaling that we
use for the electric potential is commonly associated with a piezoelectric actuator plate
(see [3]). By identifying the terms with identical power, we define the following set of
variational problems:

P−4 : am
−4(s

0, r) = 0,
P−3 : am

−4(s
1, r) + am

−3(s
0, r) = 0,

P−2 : am
−4(s

2, r) + am
−3(s

1, r) + am
−2(s

0, r) = 0,
P−1 : am

−4(s
3, r) + am

−3(s
2, r) + am

−2(s
1, r) + am

−1(s
0, r) = 0,

P0 : am
−4(s

4, r) + am
−3(s

3, r) + am
−2(s

2, r) + am
−1(s

1, r) + am0 (s
0, r)+

+A+(s0, r) + A−(s0, r) = L(r).

To proceed with the asymptotic analysis we need to solve each variational subproblem
above and characterize the limit electromechanical state s0 = (u0, ϕ0) and its associated
limit problem.

We start by solving problem P−4. Let us choose test functions r = s0 ∈ V(Ω,ΓmD)×
V (Ω,ΓeD): ∫

Ωm

Cm
3333e33(u

0)e33(u
0)dx = 0.

Since Cm
3333 > 0, we have e33(u

0) = 0 and, thus, um,03 = w0(x̃), with x̃ = (xα) ∈ ω.
Let us consider problem P−3. Since e33(u

0) = 0, we get
∫

Ωm

{
Cm

3333e33(u
1) + 2Cm

α333eα3(u
0)
}
e33(v)dx = 0,

which is satisfied when e33(u
1) = −

2Cm
α333

Cm
3333

eα3(u
0).

Let us consider problem P−2 with test functions v3 = 0:

∫

Ωm

(
Cm
α333 −

Cm
3333C

m
α3β3

2Cm
β333

)
e33(u

1)∂3vαdx = 0.

This implies that e33(u
1) = 0 and, thus, eα3(u

0) = 0, i.e., um,0α (x̃, x3) = ū0α(x̃)−x3∂αw
0(x̃).

The displacement field um,0 corresponds to a Kirchhoff-Love-type kinematics and it be-
longs to VKL(Ω

m,Γ0
mD) := {v ∈ H1(Ωm;R3); ei3(v) = 0, v = 0 on Γ0

mD} = {v ∈
H1(ω;R2) ×H2(ω); vi = ∂νv3 = 0 on γ0}, where Γ0

mD := γ0 × (−h, h) ⊂ Γmlat denote the
fixed part of the boundary Γmlat of the plate-like body.

By choosing test functions vα = 0, problem P−2 is verified when

Cm
3333e33(u

2) + 2Cm
α333eα3(u

1) + Cm
αβ33eαβ(u

0) + Pm
333∂3ϕ

0 = 0. (4)
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By taking into account test functions v3 = 0 in problem P−1, we obtain that:

Cm
τ333e33(u

2) + 2Cm
τ3σ3eσ3(u

1) + Cm
αβτ3eαβ(u

0) + Pm
3τ3∂3ϕ

0 = 0. (5)

The linear system constituted by equations (4)-(5)

{
Cm

3333e33(u
2) + 2Cm

α333eα3(u
1) = −Cm

αβ33eαβ(u
0)− Pm

333∂3ϕ
0,

Cm
τ333e33(u

2) + 2Cm
τ3σ3eσ3(u

1) = −Cm
αβτ3eαβ(u

0)− Pm
3τ3∂3ϕ

0,

admits one and only one solution, such that

{
eσ3(u

1) = ∆σk(C
m
αβk3eαβ(u

0) + Pm
3k3∂3ϕ

0),
e33(u

2) = 2∆3k(C
m
αβk3eαβ(u

0) + Pm
3k3∂3ϕ

0).
(6)

Coefficients ∆ik = ∆ki are shown below

∆ := ǫijkC
m
i313C

m
j323C

m
k333, ∆1k := − 1

∆
ǫkijC

m
i323C

m
j333,

∆2k := − 1
∆
ǫkijC

m
j313C

m
i333, ∆3k := − 1

∆
ǫkijC

m
i313C

m
j323,

and ǫkij denotes the Ricci’s alternator symbol.
We define the following functional spaces:

Ṽ := {v± ∈ V(Ω±,ΓmD), v
m ∈ VKL(Ω

m,Γ0
mD); v±|S± = vm|S±},

Ψ := {ψ ∈ L2(Ωm); ∂3ψ ∈ L2(Ωm)},

Ψ̃ := {ψ± ∈ V (Ω±,ΓeD), ψ
m ∈ Ψ; ψ±|S± = ψm|S±}.

Let us consider problem P0. By choosing test functions r ∈ Ṽ × Ψ̃, and by means of the
relations (6) among u2, u0 and ϕ0, one obtains the following limit problem:

{
Find s0 ∈ Ṽ × Ψ̃ such that

A+(s0, r) + A−(s0, r) + AmKL(s
0, r) = L(r) for all r ∈ Ṽ × Ψ̃,

(7)

where

AmKL(s
0, r) :=

∫

Ωm

{
C̃m
αβστeστ (u

0) + P̃m
3αβ∂3ϕ

0)eαβ(v)− (P̃m
3αβeαβ(u

0)− H̃m
33∂3ϕ

0)∂3ψ
}
dx.

The reduced electromechanical coefficients C̃m
αβστ , P̃

m
3αβ and H̃m

33 are listed below

C̃m
αβστ := Cm

αβστ + 2∆pqC
m
αβp3C

m
στq3, P̃m

3αβ := Pm
3αβ + 2∆pqC

m
αβp3P

m
3q3,

H̃m
33 := Hm

33 − 2∆pqP
m
3p3P

m
3q3.

The limit electric potential ϕm,0 can be explicitly characterized as a second order poly-
nomial function of x3. Indeed let us consider the limit problem (7) and choose test
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functions r = (0, ψ) ∈ Ṽ × Ψ̃. By integrating by parts, we obtain the following equation
with its associated continuity conditions of the electric potential at the interfaces S±:





∂33ϕ
m,0 = −

P̃m
3αβ

H̃m
33

∂αβw
0 in Ωm,

ϕm,0(x1, x2, h) = ϕ+,0, ϕm,0(x1, x2,−h) = ϕ−,0 on S±,

where ϕ±,0 := ϕ±,0(x1, x2,±h). The electric potential can be written as follows

ϕm,0(x1, x2, x3) =

2∑

k=0

φk(x1, x2)x
k
3 (8)

with

φ0 =
ϕ+,0 + ϕ−,0

2
+
h2P̃m

3αβ

2H̃m
33

∂αβw
0, φ1 =

ϕ+,0 − ϕ−,0

2h
, φ2 = −

P̃m
3αβ

2H̃m
33

∂αβw
0.

Remark. The previous characterization of the electric potential ϕm,0 is a rigorous jus-
tification of the a priori assumptions conjectured by Bernadou and Hanel [10] and it
represents the complete anisotropic generalization with respect to the paper [11]. We can
also notice that the regularity of the electric potential only depends on the regularities
of ϕ±,0 and of w0. Hence, ϕ±,0 ∈ L2(ω) and w0 ∈ H2(ω) imply that ϕm,0 ∈ Ψ. The
space Ψ with the norm ‖ψ‖2Ψ := |ψ|20,Ωm + |∂3ψ|

2
0,Ωm can be identified with the space

H1(−h, h;L2(ω)) endowed with the usual norm. Therefore, the trace of the elements of
Ψ on S± makes sense in L2(S±).

3.2 A different form of the limit problem

By taking advantage of the explicit form (8) of the electric potential ϕm,0 and of the
Kirchhoff-Love displacement field um,0 := (um,0α = ū0α(x̃) − x3∂αw

0(x̃), um,03 = w0(x̃)),
with u0

H = (ū0α), we rewrite problem (7) in a different way: the bilinear form, defined on
Ωm, will be associated with a two-dimensional appropriate bilinear form defined over the
middle plane ω of the plate, which represents the interface between Ω+ and Ω−.

Thus, by choosing test functions ψm(x̃, x3) = ψ0(x̃) + x3ψ
1(x̃) + x23ψ

2(x̃) ∈ Ψm, with

ψ1 = [[ψ]]
2h

∈ L2(ω), and vm := (vmα = v̄0α(x̃) − x3∂αv3(x̃), v
m
3 = v3(x̃)) ∈ VKL, the bilinear

form AmKL(s
0, r), defined over Ωm, can be identified with an equivalent two-dimensional

bilinear form ÃmKL(s
0, r), defined over ω, as follows:

ÃmKL(s
0, r) := 2h

∫

ω

{(
C̃m
αβστeστ (u

0
H) + P̃m

3αβ

[[ϕ0]]

2h

)
eαβ(vH)+

+

(
−P̃m

3αβeαβ(u
0
H) + H̃m

33

[[ϕ0]]

2h

)
[[ψ]]

2h

}
dx̃+

2h3

3

∫

ω

Amαβστ∂στw
0∂αβv3dx̃,

9
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where Amαβστ := C̃m
αβστ −

P̃m
3αβ

P̃m
3στ

H̃m
33

and [[f ]] := f+ − f− denotes the jump function at the

interface ω between Ω+ and Ω−.
Hence the limit problem (7) takes the following equivalent form

{
Find s0 ∈ Ṽ × Ψ̃ such that

A+(s0, r) + A−(s0, r) + ÃmKL(s
0, r) = L(r) for all r ∈ Ṽ × Ψ̃.

4 THE ELECTROMECHANICAL INTERFACE PROBLEM

The aim of this section is to derive a coupled electromechanical interface problem
between the two piezoelectric bodies Ω+ and Ω− with some ad hoc transmission con-
ditions at the interface ω. By virtue of the asymptotic methods we replace the three-
dimensional electromechanical energy of the intermediate piezoelectric layer with a specific
two-dimensional surface energy defined over the middle plane of the plate. This surface
energy generates non classical transmission conditions between the two three-dimensional
bodies. We distinguish, respectively, between the electric and the mechanical interface
problems, each one with their associated appropriate transmission conditions. By rewrit-
ing problem (7) in its differential form after an integration by parts and by using the
expression (8) of the limit electric potential, we obtain:

Electrostatic problems in Ω± Elasticity problems in Ω±






∂iD
±

i (u
0, ϕ0) = F in Ω±,

D±

i (u
0, ϕ0)ni = d on ΓeN ,

ϕ0 = 0 on ΓeD,






−∂jσ
±

ij(u
0, ϕ0) = fi in Ω±,

σ±

ij(u
0, ϕ0)nj = gi on ΓmN ,

u0 = 0 on ΓmD,

Transmission conditions on ω




[[D3(u
0, ϕ0)]] = 0 on ω,

[[σα3(u
0, ϕ0)]]− P̃m

3αβ [[∂βϕ
0]] = ∂βnαβ(u

0
H) on ω,

[[σ33(u
0, ϕ0)]] = ∂αβmαβ(w

0) on ω,

[[u0]] = 0 on ω,

where σ±

ij(u
0, ϕ0) := C±

ijkℓekℓ(u
0)− P±

ijkEk(ϕ
0) is the Cauchy stress tensor, D±

i (u
0, ϕ0) =

P±

ijkejk(u
0) +H±

ijEj(ϕ
0) is the electric displacement field, nαβ(u

0
H) := 2hC̃m

αβστeστ (u
0
H) is

the membrane stress tensor, while mαβ(w
0) := −2h3

3
Amαβστ∂στw

0 is the moment tensor.

Remark 2. The previous electromechanical interface problem can be considered as a
generalization in the case of piezoelectric assemblies of the transmission problem obtained
in [7, 8] for thin elastic inclusions with high rigidity. The particular jump conditions at
the interface yield to a non standard transmission problem which can be solved by an
adapted Neumann-Neumann domain decomposition algorithm [12].

10
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5 CONCLUDING REMARKS

In the present work we derive an interface model corresponding to a generic piezo-
electric assembly with a piezoelectric interphase through an asymptotic analysis. The
middle layer is replaced by a particular surface energy which is associated with ad hoc
transmission conditions at the interface of the two bodies. This model is extremely versa-
tile because it can capture the electromechanical behavior of different assemblies, just by
varying the nature of the constituent materials. Here, we propose the more general situa-
tion, in which the multimaterial is constituted by three different anisotropic piezoelectric
materials. However, we can adapt the model by using other material combinations: for
instance, we can choose two elastic and conductor bodies separated by an intermediate
piezoelectric layer, which could describe the behavior of a piezoelectric actuator embedded
within a certain structural member.

As future developments, we would like to prove the strong convergence of the solution
of the physical problem towards the solution of the limit problem, in order to mathemat-
ically justify the limit model. Moreover, we would like to study more complex interface
problems taking into account thermo-electromagnetoelastic couplings and time-dependent
phenomena.
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