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Abstract. In this paper a simulation method for a strip-yield crack model applied
to thin walled structures is presented. For this model an exact analytic solution of the
governing differential equations including the inner boundary conditions is known. This
analytic solution is reformulated to be useable in the XFEM approach as crack tip en-
richment function. The proposed computational method is validated on a single edge
cracked specimen againt a high resolution standard FE simulation. Results are in good
agreement.

1 INTRODUCTION

The explicit Finite Element (FE) Method is a well established tool for the simulation of
dynamic processes in the field of mechanical engineering. For many applications, e.g. the
calculation of deformations and intrusions in automotive crash simulations, an acceptable
accuracy can be achieved using coarse meshes. However for the numerical analysis of
phenomena involving discontinuities, singularities or high gradients, e.g. failure of joints,
crack initiation and propagation, the classic FE method needs locally high refined meshes.
According to the Courant-Friedrich-Levy criterion this leads to small time steps and thus
to unacceptable long computation times, otherwise instabilities will occur.

To overcome these problems many different numerical approaches were developed,
e.g. meshless methods, cracking particles method or generalized finite element methods.
In [?] a review of computational methods for fracture in brittle and quasi-brittle solids can
be found. A very popular tool for the simulation of fracture is the extended finite element
method (XFEM), which was introduced in [?]. In this method elements near the crack are
enriched by additional shape functions through the partition of unity concept. Usually
this is done in two ways. Elements cut by the crack are enriched with Heaviside functions
to allow a discontinuity in the displacement field within an element. Thus a crack can
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propagate freely in the mesh without alignment and no prescription of the crack path is
necessary. Elements near to the crack tip are enriched with tip enrichment functions. In
the ideal case these functions span the analytical solution of the problem, e.g. for brittle
fracture the analytical solution of [?] is widely used with XFEM. The use of the analytic
solution results in higher accuracy then the standard FEM and thus a coarser mesh can
be used for XFEM. This is not necessarily the case when the enrichment differs from
the analytical solution. The crack representation itself can be chosen independently from
the XFEM method, common choices are crack representations as straight line segments
or level set methods which also allow curved cracks, when quadratic finite elements are
used (compare [?]). Between tip enriched and standard elements the so-called blending
elements are placed. Here a special treatment can help to avoid unwanted terms at the
boundary between enriched and not enriched elements, see [?]. The integration of en-
riched elements needs to be treated with care. Sub-triangulation of elements cut by the
crack or containing the crack tip is needed together with an adaption of the degree of
the quadrature rule. Especially in 3d this is a major task. It should be noted, that the
XFEM approach is well suited for a small number of cracks while the handling of many
cracks becomes cumbersome.

Strip-yield models, also often called cohesive models, introduced by Baerenblatt [?]
and Dugdale [?], are widely used for the simulation of cracks in quasi-brittle materials.
They avoid the use of nonlinear material models but still describe plasticity effects of the
material. The crack is virtually extended with a strip-yield zone, where a non-vanishing
traction acts. While the original crack remains traction free, the non-vanishing traction
in the strip-yield zone represents the hardening and softening of the material. Strip-yield
models can be efficiently simulated using XFEM. In [?, ?] Xiao and Karihaloo derived
asymptotic fields for several cohesive laws under mixed-mode conditions and used them
in XFEM simulations. The traction of the asymptotic fields used as tip enrichment equals
asymptotically the predefined closure stress in the cohesive zone. On the remaining crack
the faces are not traction free. In this paper the exact analytical solution of the strip-yield
model will be used as tip enrichment in the XFEM approach. This analytical solution,
derived in [?], equals exactly the predefined closure stress in the strip-yield zone and is
traction free on the rest of the crack.

This paper is organized as follows. In section 2 the problem setting and a summary of
the derivation of the analytical solution will be given, for details see [?]. To use the analytic
solution as crack tip enrichment it needs to be reformulated. Section 3 describes the use
of this solution in the XFEM approach and the computational method for the strip-yield
model. Section 4 contains the validation of the proposed method. The solution of a
single edge cracked specimen is compared to a high resolution FE simulation. In section
5 conclusions are drawn.
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Figure 1: Illustration of the solution domain Ω with the outer boundary Γ0 ∪ Γ1 and the crack Γc.

2 PROBLEM SETTING AND ANALYTICAL SOLUTION

We denote by Ω the general solution domain in 2d, which contains a sharp crack, ΓC
(see fig. 1). A Dirichlet, i.e. displacement, boundary condition is applied on Γ0 and a
Neumann, i.e. force, boundary condition on Γ1, where Γ = ΓC ∪ Γ0 ∪ Γ1. We consider a
plane stress problem within the framework of small displacements. The material is linear
elastic and no volume forces are present.

The strip-yield model, which we consider, was first introduced by [?, ?] for a through
crack in an infinite plate for a non-hardening material in plane stress. The elastic-plastic
behavior is approximated by the superposition of the linear elastic solution for traction
free crack edges and a solution for a closure stress with a magnitude of the yield stress σy
at the crack tip such that the stress singularity of the linear elastic near field solution is
removed.

Fig. 2 shows a Dugdale-like configuration (Mode I). A crack ranges from −∞ to +rD on
the x-axis, where for 0 < x < rD (in the Dugdale zone) a constant crack closing traction
τ̂ = ± i τ̂D (τ̂D ∈ R) acts. The rest of the crack, i.e. for x ≤ 0, is traction free.

Throughout this paper the complex derivative is denoted by (·)′, the complex conjugate

by (·) and the adjoint (conjugate and transpose) by (·)∗ := (·)
T

. The two holomorphic
complex potentials, φ (z) and ψ (z), and their complex derivatives are related to the
general solution for the displacement- and stress-fields [?, ?, ?] as follows:

q =
1

2µ

(
κφ (z)− zφ′ (z)− ψ(z)

)
, (1)

σh = φ′ (z) + φ′ (z) , σd = zφ′′ (z) + ψ′ (z) , (2)

where κ = (3 − ν)/(1 + ν) for plane stress, with Poisson’s ratio ν = λ/(2(λ + µ)), and
λ and µ are the Lame constants. The quantities, σh and σd, are the stress combinations
introduced by Kolosov [?].

A comprehensive description of the derivation of the analytical solution can be found
in [?]. Here we present a short summary. We construct the analytical solution in the
crack tip region, which will satisfy the governing partial differential equations as well as
the inhomogeneous traction boundary conditions imposed by the Dugdale model.
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Figure 2: Mapping of the physical solution domain in the complex z-plane to the upper half plane
(ζ-plane) by a conformal mapping function f (ζ) = −rD

(
ζ2 − 1

)
. The physical solution domain contains

a straight crack along the negative part of the x-axes with a physical crack tip at x = y = 0 and a leading
strip yield zone of length rD, where a traction τ̂ with magnitude of the materials yield stress σy acts.

2.1 Calculation of the complex potentials, φ and ψ

For convenience we introduce a conformal mapping (see fig. 2), which maps the physical
z-plane to the upper half of the complex plane ζ by means of the holomorphic inverse
function f−1 (z) = ζ, where

z = f (ζ) = −rD
(
ζ2 − 1

)
. (3)

The crack is mapped on the real ξ-axis in the ζ-plane, such that the Dugdale-zone is
located in the interval (−1, 1). If we choose ψ as a function of φ in the following way,

ψ (ζ) = −φ
(
ζ
)
−
f
(
ζ
)

ḟ (ζ)
φ̇ (ζ) , (4)

then the boundary condition can be formulated as follows[
φ (ζ)− φ

(
ζ
)]
ζ=ξ+

=

{
τ̂Df (ξ) for |ξ| < 1
0 for |ξ| > 1

, (5)

in which the substitution ζ = ξ+ means that ζ and ζ approach the real ξ-axis from the
upper and lower half plane, respectively. A dot over an expression means derivation with
respect to ζ. A solution of (5) can be found with the representation for φ

φ (ζ) =
K∑
k=0

Akζ
k

︸ ︷︷ ︸
=:φh

+
∞∑
n=1

anŴn (ζ)︸ ︷︷ ︸
=:φp

, (6)

where the homogeneous part, φh (ζ), is a power series with complex coefficients, Ak, so
that (5) reduces to [

φp (ζ)− φp
(
ζ
)]
ζ=ξ+

=

{
τ̂Df (ξ) for |ξ| < 1
0 for |ξ| > 1

. (7)
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For the inhomogeneous part, φp (ζ), a more specific representation is chosen by means of
a series of base functions

Wn (ζ) =
(
ζ −

√
ζ2 − 1

)n
, (8)

with complex coefficients, an. Each function Wn (ζ) consists of two Riemann sheets from
which we use the one that approaches zero for |ζ| → ∞. We chose the branch cut on
the real ξ-axis that connects the two branch points at ±1. Due to this construction, the
boundary condition outside of the Dugdale zone, |ξ| > 1, is already fulfilled. Suitable
coefficients an have to be found, such that the condition inside the Dugdale zone, |ξ| < 1,
is also met, and we get

an = −4i

π
τ̂D rD

{ 1
n(n2−4)

for oddn

0 for evenn
. (9)

By inserting (9) and (8) in (6) we finally obtain the closed form,

φp (ζ) =
i

π
τ̂DrD

(
ζ − 2

(
ζ2 − 1

)
tanh−1

(
ζ −

√
ζ2 − 1

))
, (10)

for the inhomogeneous part φp (ζ) in case of a constant traction density.
The homogeneous part of φ (ζ) causes a singularity in the stress field at the crack tip,

which needs to be removed by the inhomogeneous part. Calculating the limit of the von
Mises-stress for z → rD the following required relation between the coefficient A1 and the
length of the Dugdale-zone rD is found,

rD =
iπ

2τ̂D
A1 . (11)

2.2 Analytical solution as crack tip enrichment

The obtained analytical solution needs to be reformulated such that it can be used as
tip enrichment functions in the XFEM formalism. The complex displacement as stated
in eq. (1) can be written in the following form, using (4) for ψ, (6) for φh and (10), (11)
for φp:

q(ζ) =
K∑
k=1

1

2µ
κζk︸ ︷︷ ︸

=:gk1 (ζ)

Ak +
K∑
k=1

1

2µ
ζk︸ ︷︷ ︸

=:gk2 (ζ)

Ak +
K∑
k=1

1

2µ

f(ζ)− f(ζ)

ḟ(ζ)
kζ

k−1

︸ ︷︷ ︸
=:gk3 (ζ)

Ak

+

(
1

2µ
κφAp (ζ) + φAp (ζ)

)
︸ ︷︷ ︸

=:gk4 (ζ)

A1 +

(
1

2µ

f(ζ)− f(ζ)

ḟ(ζ)
φ̇Ap (ζ)

)
︸ ︷︷ ︸

=:gk5 (ζ)

A1 ,

(12)

where φAp (ζ) := −0.5
(
ζ − 2 (ζ2 − 1) tanh−1

(
ζ −

√
ζ2 − 1

))
. The coefficients Ak are

complex numbers and can be represented as Ak = αk + iβk with αk, βk ∈ R. Now the
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Figure 3: Illustration of XFEM enrichment strategy: nodes near the crack tip are enriched with tip
enrichment functions, while nodes belonging to elements cut by the crack are enriched with the Heaviside
function.

two dimensional real displacement (u1, u2) can be expressed using the real and imaginary
part of the complex displacement q.(

u1(f(ζ))
u2(f(ζ))

)
=

K∑
k=1

[
fk11(ζ) fk12(ζ)
fk21(ζ) fk22(ζ)

](
αk
βk

)
, (13a)

fk11(ζ) = Re
(
gk1(ζ) + gk2(ζ) + gk3(ζ) + δ1k

(
gk4(ζ) + gk5(ζ)

) )
(13b)

fk12(ζ) = Re
(
i
[
gk1(ζ) + gk2(ζ)− gk3(ζ) + δ1k

(
gk4(ζ)− gk5(ζ)

) ])
(13c)

fk21(ζ) = Im
(
gk1(ζ) + gk2(ζ) + gk3(ζ) + δ1k

(
gk4(ζ) + gk5(ζ)

) )
(13d)

fk22(ζ) = Im
(
i
[
gk1(ζ) + gk2(ζ)− gk3(ζ) + δ1k

(
gk4(ζ)− gk5(ζ)

) ])
(13e)

where δij is the Kronecker delta. With eq. (13) we found a form of the analytic solution
which can be used in the XFEM approach, which will be described in the following section.

3 COMPUTATIONAL APPROACH USING XFEM

For the XFEM formalism nodes near the crack are enriched with additional shape
functions. Nodes of elements which are cut by the crack are enriched with the Heaviside
function, such that the displacement includes a jump over the crack. Nodes near the crack
tip are enriched with crack tip enrichment functions.

3.1 Enrichment functions and strategies

In this paper we choose to enrich all nodes whose distance to the crack tip is below a
given radius. Other enrichment strategies are possible and can be found in the literature.
Fig. 3 illustrates the setting. We denote by I the set of indices of all nodes, by IH indices
of Heaviside enriched nodes and by IT indices of tip enriched nodes. Then the XFEM
approach for the displacement is as follows:(

u1

u2

)
(x) =

∑
i∈I

φi(x)

(
ui1
ui2

)
+
∑
j∈IH

φj(x)H(x)

(
γj1
γj2

)
+
∑
l∈IT

φl(x)
K∑
k=1

[
fk11 fk12

fk21 fk22

]
(ζ)

(
αlk
βlk

)
, (14)
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where φi(x) is the standard FE shape function belonging to node i and ζ = f−1(x) defined
as depicted in fig. 2. In addition to the standard degree of freedoms ui1, u

i
2, new degrees

of freedom γj1, γ
j
2 associated with the jump enrichment and αlk, β

l
k associated with the tip

enrichment are introduced. In the elements which contain the crack tip and the Dugdale
zone all nodes are constrained to have the same αk, βk for each order.

3.2 Principle of virtual work

In the next step we state the equation of virtual work for our problem and use the
above ansatz, eq. (14), for the displacement. Note that this approach is equivalent to the
mathematical weak formulation of the boundary value problem followed by the Galerkin
method. For the displacement u as well as for the test function v the ansatz of eq. (14)
is used ∫

Ω

Mε(u) : ε(v) dx+

∫
ΓD

σy · w(v) do =

∫
Γ1

F · v do , (15)

where ΓD denotes the Dugdale zone, ε(u) is the strain tensor, M ∈ R3×3 is the elasticity
tensor for the plane stress case, such that σ(u) = M · ε(u), w(v) denotes the jump of the
test function v over the crack and for two tensors a and b, a : b :=

∑
i,j aijbij is the sum

of the component wise multiplication.
For enriched nodes the strain tensor and thus the derivatives of the enrichment func-

tions have to be calculated. While this is easy for the Heaviside enrichment, care has to
be taken for the crack tip enrichment functions. Here the derivation in the x, y plane is
transformed to complex derivatives.

Eq. (15) then results in a system of equations for the degrees of freedom of the dis-
placement ui1, u

i
2, γ

j
1 γ

j
2, α

l
k, β

l
k. Due to the conformal mapping, introduced in eq. (3), this

system of equations contains a nonlinear dependence of the length of the Dugdale zone,
rD. For a given external load, rD is slowly increased until the degrees of freedom of the
displacement remain unchanged. This can be considered as a fixed point problem for the
degrees of freedom, while it is computationally more efficient to reformulate this problem
using a damped quasi-Newton method.

The implementation is based on a freely available XFEM implementation [?, ?]. Cracks
are represented as straight line segments and the mentioned constraining of the crack tip
enrichment is implemented as penalty formulation.

3.3 Projection of the stress tensor

There are several possible scenarios where an accurate determination of the stress close
to the crack tip is of high importance. Crack propagation can be one of these cases. In
the standard FE method the stress calculated from the displacement via derivation is
discontinuous at the element boundaries. We call this quantity the compatible stress.
In the literature different approaches can be found how to increase the accuracy of the
compatible stress near the crack tip. The application of moving least squares (MLS)
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smoothing or averaging in a post processing is a simple way to a obtain a continuous stress,
but can lead to problems such as unwanted oscillations. In [?] a statically admissible
stress recovery scheme is derived, where the stress is fitted at sampling point to basis
functions, which fulfill the equilibrium condition in the domain and the traction condition
on the boundary. In contrast to methods which act as post processing routines there
exist approaches, which alter the enrichement functions to achieve a higher accuracy in
the compatible stress, see e.g. [?].

In this paper the stress tensor is projected in a L2-sense on the analytical solution.
This approach is also a post processing method and therefore easy to add to an existing
implementation. The projection is applied only for elements which contain tip enriched
nodes, i.e. fully tip enriched elements and blending elements. We denote the domain of
projection by Ωenr. Here the compatible stress is projected on the analytical solution,
which is given byσanalyticx

σanalyticy

τanalyticxy

(x)
∣∣∣
Ωenr

=M

∑
j∈I\IT

ε(φj)(x) +
∑
l∈IT

φl(x)
K∑
k=1


∂fk11
∂x

∂fk12
∂x

∂fk21
∂y

∂fk22
∂y

∂fk11
∂x

+
∂fk21
∂y

∂fk12
∂x

+
∂fk22
∂y

(ζ)

(
α̂lk
β̂lk

) ,

(16)
where ζ = f−1(x). The projection in L2-sense is conducted by solving the resulting system
of equations for the new coefficients uj1, u

j
2, α̂

l
k, β̂

l
k:∫

Ωenr

σanalytic(x) : σanalytic(x)dx =

∫
Ωenr

σ(x) : σanalytic(x)dx , (17)

where σanalytic denotes the analytic stress tensor and σ the compatible stress tensor.

4 NUMERICAL EXAMPLE – VALIDATION

For the validation of our presented approach we consider a specimen with a single edge
crack. The resulting length of the Dugdale zone and the calculated stress field will be
compared against a high resolution standard FE simulation.

The specimen is of height 2h and width w, where h = w = 60mm is chosen. The
thickness of the specimen is t = 1.5mm and the existing crack is of length c = 8mm, see
fig. 4. At the upper and lower edge of the specimen a symmetric displacement boundary
condition is applied, v = ±(0, 0.05mm). The material parameters are the E-modulus
E = 205GPa and the Poisson number ν = 0.3. In the Dugdale zone a constant traction
of τ̂D = 400MPa is applied.

For the XFEM calculation a mesh with nearly quadratic elements with an edge length
of ≈ 3mm are chosen. For the crack tip enrichment a radius of 7.5mm is chosen. The
crack tip enrichment functions are chosen to be of order three, i.e. K = 3 in eq. (14). For
the validation a standard FE simulation with a mesh of edge length 0.1mm is conducted.

Both the standard FE as well as the XFEM simulation return a length of the Dugdale
zone of 3.2mm. Fig. 5 shows a comparison of the von Mises stress near the crack tip
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h

c rD

v

x

y

Figure 4: Validation setting: A single edge cracked specimen of width w and height 2h contains a
crack of length c and a strip yield zone of length rD. A symmetric displacement boundary condition of
magnitude v is applied at the lower and the upper edge.

between the standard FE and the XFEM simulation. Within the enriched domain the
XFEM stress is projected on the analytic solution. In the fully tip enriched elements
a good agreement with the FE results is obtained. Due to the partial enrichments in
the blending elements, a perturbation is introduced. This leads to big deviation between
the FE and XFEM results in the blending elements. To improve the XFEM results in
the blending elements an approach as suggested in [?] combined with an adapted stress
projection could be used.

For a better comparison between the standard FE and the XFEM, the von Mises
stress, as well as the σxx and σyy components of the stress tensor are plotted. Fig. 6
shows the stress on the upper crack edge within the fully tip enriched domain. The real
crack tip, i.e. the end of the traction free crack is placed at 8mm. The Dugdale zone with
the prescribed traction of 400MPa ranges from 8mm to 11.2mm. Both the FE and the
XFEM results agree well in the σyy component with the prescribed boundary conditions.
Fig. 7 shows the stress on a line normal to the crack, also in the fully tip enriched domain.
Here it can be seen that the stress calculated by XFEM declines slightly stronger than
the one calculated by FE. This might be connected to the chosen stress projection. In
general it can be said that both calculated stress agrees very well in the vicinity of the
crack tip, i.e. in the fully tip enriched domain.

5 CONCLUSIONS

Considering a strip-yield crack model applied to thin walled structures a computational
approach is developed. Starting from the known exact analytical solution, see [?], the
XFEM method is applied. The analytical solution is reformulated to be usable as crack
tip enrichment. A validation is conducted on a single edge cracked specimen against,
comparing the XFEM solution with a high resolution standard FE simulation. Results
are in good agreement.
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Figure 5: Von Mises Stress in the vicinity of the crack tip. Left: FE Simulation, Right: XFEM
simulation.

Figure 6: Comparison of the stress computed by FE and XFEM on the axis on the crack plane (y =
0mm).

Figure 7: Comparison of the stress computed by FE and XFEM along a line normal to the crack tip
(x = 10mm).
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