
11th World Congress on Computational Mechanics (WCCM XI) 

5th European Conference on Computational Mechanics (ECCM V) 

6th European Conference on Computational Fluid Dynamics (ECFD VI) 

E. Oñate, J. Oliver and A. Huerta (Eds) 

PERIDYNAMICS WITH ADAPTIVE GRID REFINEMENT 

DANIELE DIPASQUALE
*†

, GIULIA SAREGO
*†

, MIRCO ZACCARIOTTO
*†

AND 

UGO GALVANETTO
*†

 

* 
Department of Industrial Engineering  

University of Padova, Via Venezia 1, Padova 35131, Italy 

†
 Centre of Studies and Activities for Space 

CISAS - "G.Colombo", Via Venezia 15, Padova 35131, Italy 

Key Words: Peridynamics, Adaptive grid refinement, Multiscale model, Dynamic fracture. 

Abstract. In recent years, a new non-local theory of continuum mechanics called 

Peridynamics has proven to be an efficient framework for computational applications to 

analyze phenomena involving crack formation and propagation in structural materials.  

In general, fracture mechanics phenomena are linked to a scale length which is comparable 

to some microscopic structure of the material and this length can be assumed as the maximum 

distance at which the non-local interaction is still present, that is the so called horizon. The 

peridynamic numerical implementation of uniform grid spacing with constant horizon for the 

entire structure does not allow an efficient use of the computational resources. A promising 

alternative approach is to implement an adaptive grid refinement technique in order to 

automatically increase the nodal density and decrease the horizon length in the areas in 

which cracks form and propagate. The numerical solution of the peridynamic theory shows 

that three different types of convergence can be identified depending on how the ratio 

between horizon and grid spacing is changed and whether one of the two quantities is kept 

constant. The adaptive grid refinement is applied in order to analyze how these kinds of 

convergence influence crack propagation. This analysis is carried out at a local level, since 

the convergence criterion is employed for a limited area around cracks, while some previous 

studies applied it on the entire body. The dynamic analysis show phenomena of distortion and 

spurious reflections of stress waves which pass through the interface regions: for this reason, 

the effects of non-uniform grid spacing on the propagation of a plane wave are analyzed 

within a multiscale approach.  

 

 

 



Daniele Dipasquale, Giulia Sarego, Mirco Zaccariotto and Ugo Galvanetto. 

 

2 
 

1 INTRODUCTION 

The study of brittle fracture dynamics through numerical tools and theories has been 

drawing more and more interest thanks to its importance for engineering purposes but also for 

the complexity of the phenomenon itself [1]. Numerical methods based on the classical theory 

of mechanics, such as XFEM (eXtended Finite Element Method) [2], need additional set of 

equations in order to overcome the impossibility of defining motion equations, expressed 

through a differential operator, whenever a discontinuity occurs in the domain. This approach 

deals with fracture phenomena from a macroscopic point of view thanks to several criteria 

proposed ad hoc for specific fracture problems in order to properly consider crack occurrence 

and phenomena such as crack branching. Nevertheless, such criteria have a considerable 

computational cost and seem not to be able to reproduce all possible phenomena, such as, for 

example the interaction among different cracks, especially in three dimensional analyses. On 

the other hand interface elements, often coupled with Cohesive Zone Models (CZM) [3], can 

only be applied if the path of the crack is known a priori and moreover it is limited by the 

element discretization. Other numerical methods based on discrete non local theories, such as 

the atomistic approach [4], deal with fracture dynamics from a microscopic point of view: 

cracks are due to the break of atomic cohesion forces. However their use is limited from an 

applicative point of view, due to low computational efficiency. This problem has led to the 

development of concurrent multiscale models [5], which require complex strategies in order 

to couple different theories; besides, the atomistic approach has to be applied where the crack 

nucleation is likely to occur, a region that has to be known a priori. Such limitations have led 

to the development of a new nonlocal theory of continuum called Peridynamics [6], which 

seems to be able to accurately treat phenomena of damage and fracture at different spatial 

length scales [7]. The theory can be equipped as well with a fatigue damage constitutive 

model in order to study the fatigue crack path evolution [8, 9]. Some authors [10, 11] have 

proposed to apply the adaptive grid refinement to peridynamic models, decreasing the grid 

spacing of the discretized domain and the length scale of the nonlocal interaction in the 

regions characterized by high strain gradient such as those near a crack tip. This is useful in 

order to improve computational efficiency, maintaining the same accuracy for the solution, 

and to implement a concurrent multiscale model within a unique mathematical framework. In 

this study, an adaptive grid refinement technique is applied in order to show its flexibility and 

efficiency in reproducing phenomena such as crack branching in a homogeneous elastic 

material in two-dimensional analyses; the set of simulations aims to evaluate how the 

different types of convergence in the numerical solution of peridynamic theory [10] influence 

the morphology of the crack propagation. The activation of refinement in proximity of the 

crack during its propagation is based on an energy trigger, as proposed in literature [11]. The 

effects due to a non-uniform mesh on elastic wave propagation have been known for a long 

time in finite element analysis [12], such as spurious reflections, as it can be seen in the 

studies concerning mono-dimensional peridynamic solutions [10]. In order to conduct the 

same type of analysis for two-dimensional models, in this paper are evaluated the spurious 

reflections and distortions of the energy flux due to a continuum wave which propagates in a 
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model with a non-uniform/multiscale grid for different combinations of reduction in grid 

spacing and nonlocal interaction. 

1.1 Overview of the peridynamic theory 

Consider a continuum domain R0, the peridynamic theory defines the motion equation of 

the i
th
 material point located at xi (initial position) through the following expression: 

  ̈  ∫  ( (   )   (    )     )      

 

   

             {      |    |   } (1) 

where u is the displacement vector field, ρ is the mass density, b is the external force density, 

f is the PairWise force function (PW) which expresses the vector force of the interaction that 

the material point located at x exerts on the material point located at xi and δ is the horizon, 

namely the upper limit distance of the interaction between two material points. Eq.1 is the 

mathematical formulation of the Bond-Based Peridynamics (BBP), which is a particular case 

of the general formulation called State-Based Peridynamics, see [6] for the limitations of the 

BBP. The PW force function depends on the constitutive model of the specific material; for a 

linear elastic material the constitutive model PMB (Prototype Microelastic Brittle) is defined 

based on the existence of a micropotential function w which is expressed as: 

 (   )  
   ‖ ‖

 
 (2) 

where c is called micromodulus (it is supposed a constant function),   
‖   ‖ ‖ ‖

‖ ‖
   is the 

relative elongation, ξ = x - xi is the initial relative position and η = u(x,t) - u(xi,t) is the current 

relative displacement; in the BBP the potential energy density W(xi) is equal to the integral of 

the micropotential function (Eq.2) in the horizon sphere centered at xi as: 

 (  )  
 

 
∫ (   )   

 

   

 (3) 

Imposing the equality of the potential energy density expressed in Eq.3 and the potential 

energy density defined in the classical theory of continuum, the value for the micromodulus in 

a two-dimensional plane stress analysis is expressed as: 

  
  

   (   )
        (4) 

where E is the Young’s modulus and v is the Poisson’s ratio. A particular and favorable 

aspect of Peridynamics is the unambiguous definition of the damage at a material point, based 

on the definition of the critical relative elongation s0. This elongation is related to the material 

fracture energy G0 (experimentally measured) through Eq.3; in a plane stress two-dimensional 

analysis s0 is calculated as: 
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So, the PW force function is defined as: 
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Eqs.6 show a history-dependence of the model, since after a bond breaks, it can’t be 

recovered, the damage is permanent; the damage state to which a material point located at xi 

is subjected is defined as: 

 (    )    
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As stated in literature [11], Peridynamics was initially formulated with an implicit assumption 

of a constant horizon within the whole domain, therefore the change in the horizon from a 

region to another one requires a proper scaling technique, expressed for the two-dimensional 

analysis as: 

  (   )      (     ) (8) 

where γ = δ/ε, in which δ and ε are two different horizon values; the scaling operation is 

needed in order to maintain constant the strain energy when the domain is subjected to a 

homogeneous strain, as highlighted in the expression: 

  ( )  
 

 
∫   (     ) (   )

 

  

 
 

 
∫

 

  
  (   )   ( )    ( )

 

  

 
(9) 

As for what concerns the material points at the interface of two regions with different 

horizons, the third Newton’s law requires that every bond of a specific material point is 

characterized by a micromodulus (Eq.4) the value of which depends only on the horizon of 

the material point itself.  

2 NUMERICAL IMPLEMENTATION OF ADAPTIVE GRID REFINEMENT 

The analyses are carried out with an explicit dynamic solver, in which a mid-point spatial 

integrator scheme in the discretization of the body is employed [13]. Considering the i
th

 node 

located at xi (called source node), Eq.1 becomes: 
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where n indicates the temporal step, Vj the volume (which is actually an area for two 

dimensional analyses) associated to the node located at xj (called family node) and βj is a 

coefficient employed in order to improve the accuracy of the numerical integration [14]. 

Eq.10 is implemented and solved through a Velocity-Verlet scheme, thanks to its robustness, 

reliability and simplicity. The numerical implementation of Peridynamics requires the 

definition of an adimensional parameter m=δ/Δx (Δx is the grid spacing in X direction); this 

parameter is fundamental in determining the accuracy and the computational efficiency of the 

peridynamic solution. Bobaru’s studies [10] highlight three types of convergence of the 

numerical solution of Eq.1 to the theoretical peridynamic and classical theory solution, in 

particular those which are analyzed in this paper through the application of the adaptive grid 

refinement are the (δ) convergence and (δm) convergence. As previously mentioned, thanks to 

the adaptive grid refinement applied to Peridynamics, the chosen convergence is implemented 

through the decrease of the grid spacing and of the horizon length in the region near the crack 

whereas in the rest of the model these quantities are not changed in order to reduce the 

computational cost. In the future will be possible to relate the horizon length to the length 

scale of the analyzed phenomenon [15], therefore the adaptive grid refinement proposed 

below allows to make a concurrent multiscale adaptive model. In literature [11], in order to 

activate the refinement, a trigger based on the strain energy density (Eq.3) is proposed, 

specifically the initial grid nodes are selected if W(xi) ≥ Wt , where Wt  is the threshold value 

determined by a percentage of the maximum strain energy density within the domain in the 

considered time step. 

The extension of the refined region is determined by the so called visibility criterion [10], 

which states that the refinement has to be applied to a region of the body which contains all 

the nodes within a horizon distance from the selected node, as shown in Fig 1. The adopted 

refinement strategy consists in recursively partitioning the distance between neighboring 

nodes of an initially uniform grid. The initial spacing is Δx0 = Δy0, each subdivision splits in 

half the spatial interval between nodes, as the following expression states: 

        
   

(      )
 (11) 

where level= 0,1,…i identifies the refinement level of the nodes of the grid; a 0 value is 

associated to the coarsest nodes belonging to the initial grid, as shown in Figure 1; the 

reduction of the horizon length in the refined portion of the grid depends on the type of the 

adopted convergence. As shown in Fig 1, an area               
  is associated to each node, 

according to its refinement level; such area is modified for the interface nodes according to 

the following expressions: 



Daniele Dipasquale, Giulia Sarego, Mirco Zaccariotto and Ugo Galvanetto. 

 

6 
 

 

Figure 1: Refinement of the 3rd level for one node identified by the trigger 

where n is the number of nodes of the i
th 

level close to nodes of the lower level (see Fig.1). 

The refinement process is completed after the upgrading of the new grid bonds and the 

association of the kinematic quantities obtained by bilinear interpolation. 

3 PROPAGATION OF CONTINUUM PLANE WAVE 

Fig.1 shows how the developed refinement technique gradually decreases the spatial step. 

This strategy is in accordance with the studies carried out by Bazant [12] and Bobaru [10], in 

which spurious reflection phenomena of an elastic wave crossing a region of non-uniform 

grid step is minimized by adopting a gradual change of grid spacing. The refinement process 

also includes the reduction of the horizon length in the refined region. The effects on the 

energy flux due to a non-uniform/multiscale region have to be evaluated. Such evaluation is 

carried out by taking into account the distortion of the energy flux of a Gauss plane wave 

when the wave meets along its path a small refined region in a two dimensional plate 

structure, in which the transverse displacements are blocked, the wave is generated by 

applying an initial displacement in the x direction: 

                  (   )       (
 

    
)
 

 (13) 

Figure 2 shows the model plate with the contour plot of the wavefront of total energy density 

(potential plus kinetic) generated of the initial half wave (it is normalized with respect to half 
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of its maximum value). The solution is obtained with the use of the linearized equation of 

Eq.10 [16], the material has Young’s modulus E=1 and mass density ρ=1. 

 

Figure 2: Grid employed for analysis: a) contour plot of total energy density flux, b) example of refined region 

of 3rd level  

Table 1: Characteristic parameters for the models with (δ) convergence, the values in bold correspond to the 

interface nodes with modified horizon  

Level 

Refinement 
δ (×10

-3
) m 

0 3.0 3 

1 1.5 - 2.1 3 - 4.2 

2 0.75 - 1.06 3 - 4.2 

3 0.375 - 0.53 3 - 4.2 

Table 2: Characteristic parameters for the models with (δm) convergence 

Level 

Refinement 
δ (×10

-3
) m 

0 3.0 3 

1 2.0 4 

2 1.25 5 

3 0.75 6 

Table 1-2 shows the parameters of the implemented models, obtained changing the 

refinement level and the type of numeric convergence of the refined region; the coarse grid 

spacing is Δx0 = 0.001. As far as the obtained models are concerned adopting the (δ) 

convergence, some interface nodes show a significant loss of integrating volume in the 

calculation of Eq.10; in order to minimize such loss the horizon length is increased by an 

appropriate amount; this strategy drastically reduces the energy flux distortion phenomena, as 

it is highlighted in the following  section. 

In Figs 3-4, the longitudinal contours (they are taken at the coordinate y=0.04) of the 

wavefront of the total energy density flux are compared at the moment in which the maximum 

energy peak is located in the refined region. It is evident how the energy flux is subjected to a 
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distortion while crossing the refined region; such distortion is more noticeable for those 

models in which the (δm) convergence is applied. 

 

Figure 3: Wavefront of the total energy density for the non-uniform/multiscale models when a (δ) convergence 

is adopted 

 

Figure 4: Wavefront of the total energy density for the non-uniform/multiscale models when a (δm) convergence 
is adopted 

To evaluate the distortion, in Table 3 the maximum (ΔEmax) and the minimum (ΔEmin) 

percentage variations of the total energy density in the refined region when it is crossed by the 

energy flux are listed. Such variations are computed with respect to the solution obtained with 

the uniform/monoscale model; in Figure 5a the energy reduction contours are plotted for one 

of the analyzed models (which is representative of the behavior of the other models as well). 

It is highlighted that the interface nodes show a conspicuous energy decrease due to the 

volume loss in the calculation of Eq.10; this effect can be reduced by modifying the horizon 

length as it was done for the interface nodes of the (δ) convergence models. In Fig.5b the 

longitudinal contour of wavefront is plotted for the (δ) convergence model without 
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modification of the horizon length of interface nodes, these manifest energy reductions of the 

37.4%.  

Table 3: Total energy density variations of the refined region’s nodes and maximum displacement variation of 

node of coordinates x = 0.1, y = 0.04 

Convergence 
Level 

Refinement 
ΔEmin [%] ΔEmax [%] Δu [%] 

δ 

1 9.83 5.86 0.24 

2 11.00 5.23 0.31 

3 11.63 5.88 0.35 

δm 

1 17.10 4.38 0.58 

2 18.96 6.25 0.87 

3 20.81 7.27 1.03 

 

 

Figure 5: a) Total energy density percentage reduction in the 3rd level refined region within a (δ) convergence 

model, b) Wavefront’s distortion without modification of the horizon length of interface nodes 

It is shown that the size of the energy decrease is bigger than the energy increase and that the 

amount increases as the refinement level goes up. Strategies in order to investigate how to 

minimize such distortions and how to properly transmit stress waves between regions with 

different grid spacing and length scale are in progress. This is important since the crack path 

is determined by the interaction of the stress wave on the crack tip during its propagation. As 

far as spurious reflections are concerned, the maximum displacement magnitude of the node 

located at x=0.1 and y=0.04 is reported in Table 3 (it is expressed as a percentage of the 

amplitude of the Gaussian wave). The amplitude of the reflected wave increases as the 

refinement level increases, but this reflection amplitude is of small entity (1% of the Gaussian 

wave), hence it is negligible. 

4 NUMERICAL EXAMPLE  

A benchmark test commonly used for verifying a numerical method consists of a pre-

notched plate subjected to a uniform traction load on the superior and inferior edges applying 
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a step load. The load is enough for triggering a crack branching propagation of the crack after 

an initial phase of self-similar growth. The same case was studied by Belytschko [2] and by 

Ha [17] which evaluated the effects of the different types of convergence of the numeric 

solution of BBP on the crack branching morphology. The material is Soda lime glass with a 

Young’s modulus E = 72 GPa, density ρ = 2440 kg/m
3
 and fracture energy G0 =135 J/m

2
, the 

analysis are two-dimensional with plane stress condition. The plate is a 0.10×0.04 m
2
 

structure with an initial crack of length 0,05 m, the initial discretization is characterized by a 

grid spacing of Δx0 = 0.001m and horizon δ = 0.003m (m=3), the load to which it is subjected 

is a tensile step load of 22MPa.  

 

Figure 6: Crack branching at 50μs computed with uniform/monoscale model (4000 nodes) 

 

Figure 7: Crack branching at 50μs computed with adaptive model: a) refined region with m=3 and δ=0.0015m, 

b) refined region with m=4 and δ=0.0020m   

The 1
st
 level adaptive grid refinement with different horizon length is applied in order to 

evaluate the effect of the convergence of the numerical peridynamic solution on the crack 

morphology. In Figure 6 the results obtained with the initial uniform/monoscale grid model 

are shown, in Figure 7-8 the crack branching phenomenon obtained applying the adaptive grid 

refinement. The results show how the horizon length affects the morphology of the crack: as it 

decreases the slope of the branching increases. We have to consider how the peridynamic 

theory introduces dispersion relations in the propagation of elastic waves [16]; these depend 

on the size of the horizon (in addition to those introduced by the numerical discretization). In 
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an adaptive model each region of the analyzed domain is characterized by a different 

dispersion relation, further analyses are being carried out to assess the effects of the 

refinement on the dynamics of the crack propagation. 

  

Figure 8: Crack branching at 50μs computed with adaptive model: a) refined region with m=5 and δ=0.0025m, 

b) refined region with m=6 and δ=0.003m   

5 CONCLUSIONS 

In this study a method to introduce an adaptive grid refinement into a Peridynamic grid has 

been presented in order to accurately simulate brittle fracture dynamic phenomena such as 

crack branching. This modelization technique determines an adaptive concurrent multiscale 

model, in which the grid spacing and the horizon length near the crack during its propagation 

are reduced. This strategy is fundamental in order to reach a horizon length equal to the length 

scale of the analyzed phenomenon or of a specific characteristic of the material, starting form 

initial grid spacing convenient for computational efficiency. Besides, it will be possible to 

adopt the more convenient discretization for accurately describing the real behavior of the 

material through a local control of the convergence of the numeric solution. Implementing a 

non-uniform/multiscale region in the peridynamic solution introduces undesired distortion 

effects which have been evaluated for different types of convergence of the numeric solution. 

In particular, the method introduces a reduction of the energy flux which crosses the refined 

region due to numeric integration errors at the interface nodes, a proposed strategy in this 

study for minimizing such errors consists in the adoption of a horizon length for those 

interface nodes which minimize the volume loss in the pairwise force function integral 

calculation. 
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