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Abstract. This paper presents an evolutionary topology optimization method for appli-
cations in design of completely submerged buoyant devices with design-dependent fluid
pressure loading. This type of structures aid rig installations and pipeline transportation
in all water depths in offshore structural engineering. The proposed optimization method
seeks the buoy design that presents higher stiffness, less material and a prescribed buoy-
ancy effect. A hydrostatic fluid is used to simulate the underwater pressure and the
polymer buoyancy module is considered linearly elastic. Both domains are solved with
the finite element method. From the initial design domain, solid elements with low strain
energy are iteratively removed until a certain prescribed volume fraction. The studied
case consists in a buoy for supporting subsea oil pipelines, in which the inner diameter is
constant and the outer shape and interior holes are defined by the optimization algorithm.
A new buoyancy constraint is introduced in order to guarantee a satisfactory buoyancy
effect.
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1 INTRODUCTION

Since its introduction [1], topology optimization has reached a certain level of maturity
enough to be applied in the industry, in the field of structural design. Through the last
decade, the method has been under a considerable scientific effort in order to extend the
idea to some other different problems, e.g. considering different objective functions and
constraints or even multiphysics problems [2, 3]. Herein, the authors propose the use of
topology optimization in the offshore structural engineering field, so far specifically in the
design of completely submerged (subsea) buoyancy modules for oil pipelines support.

In order to design subsea polymer buoys, design-dependent underwater pressure load-
ings and buoyancy effects must be considered. Design-dependent pressure loads showed to
be a challenging topic for topology optimization [4] and it is still an issue under research
[5]. To the best of the authors’ knowledge, buoyancy effects are considered for the first
time in topology optimization in the presented paper. To deal with both pressure loads
and buoyancy, an adapted fluid-structure Bi-directional Evolutionary Structural Opti-
mization (BESO) method is proposed. The discrete nature of the evolutionary methods
[6] allows the fluid-structure interfaces to be explicitly defined, which makes the pressure
loads modeling straightforward. Buoyancy requirements are introduced as an inequality
constraint in the optimization problem. The resulting buoyancy force is equivalent to the
weight of the fluid displaced by the submerged structure, expressed as:

FB = −ρfVfga (1)

where FB is the buoyancy force acting on the structure, ρf is the mass density of the fluid,
Vf the volume of the displaced fluid and ga the vector of the gravitational acceleration,
expressed in the Cartesian coordinate system (x, y) as:

ga =

{
0
−ga

}
(2)

where ga is the value of the gravitational acceleration. As seen in Fig. 1, the force FB is
balanced by the weight Ws of the structure, expressed as:

Ws = msga (3)

where ms is the mass of the structure.
Considering that the mass of the structure is a constraint in the proposed optimization

method, Ws is constant and the only variable in the force diagram is FB, which depends
exclusively on Vf , since ρf and ga are also constant. Thus, in order to guarantee some
desired buoyancy effects, the entire structural volume (including interior voids) must be
as big as possible. The final goal of the optimization problem is then to design a structure
stiffest as possible, handling design-dependent underwater pressure loads and presenting
high buoyancy effects (high displaced fluid volume).
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Figure 1: Force diagram with the resulting buoyancy force and weight acting on a completely submerged
structure (gray sphere).

2 Methodology

2.1 Computational model

The topology optimization methods are based on the structural responses obtained
computationally via the finite element method (FEM) [7]. With the FEM, the deformation
of the structure under deep water pressure loadings can be simulated. The solid material
is simulated with a static analysis using linearly elastic finite elements (without body
forces), governed by the following equation:

divσs = 0 (4)

where σs is the Cauchy stress tensor. The pressure loading is simulated by simple fluid
finite elements attached to the structural ones. The fluid is governed by the Laplace’s
equation

∇2Pf = 0 (5)

where Pf is the pressure values throughout the fluid field. The final finite element model
is [

Ks −Lfs

0 Kf

]{
us

Pf

}
=

{
0
0

}
(6)

where Ks and Kf are the stiffness matrices of the structural and the fluid domains,
respectively. The matrix Lfs couples the fluid pressure with the structural analysis.
Pressure values are imposed in some points of the pressure vector Pf and, solving the
previous system of equations, the structural displacements vector us is obtained [7].

3



R. Picelli, R. van Dijk, W.M. Vicente, R. Pavanello, M. Langelaar and F. van Keulen

2.2 Optimization problem and sensitivity analysis

The evolutionary topology optimization problem for subsea buoyancy modules design
can be stated as:

Minimize f(xi) = 1
2
uT
s Ksus + pmax(0,g)

Subject to:

[
Ks −Lfs

0 Kf

]{
us

Pf

}
=

{
0
0

}
Vs −

∑nel
i=1 Vixi = 0

xi = [0,1]

(7)

where

g =
Blim

B
− 1 ≤ 0 (8)

1
2
uT
s Ksus is the structural mean compliance C, p is an arbitrary penalty factor, Vs is the

prescribed final solid volume, nel is the number of elements inside the design domain and xi
represents the discrete design variables, in which 1 is a solid element and 0 is void. In this
work, some void elements are substituted by fluid elements capable to transfer pressure
values through the fluid domain. The term Blim is the minimum required buoyancy area
(displaced fluid area for 2D cases) and B is the buoyancy area of the current structural
design. The inequality constraint g sets a threshold for the required buoyancy area and
the equality constraint h sets the amount of solid material to be used with respect to the
volume of the design domain. When B is lower than Blim, g is higher than 0 and adds to
the objective function f(xi). This behavior is then discouraged by a high penalty factor.

A sensitivity analysis is needed in order to determine the efficiency of each element in
the structural performance and to decide which element should be eliminated or returned
to solid condition. This analysis is carried out by deriving the objective function ana-
lytically with respect to the design variables. The derivatives of f(xi) with respect to xi
are:

∂f(xi)

∂xi
= αC + pαB (9)

where αC and αB correspond to the derivatives of the compliance and the buoyancy
objectives, respectively. The derivatives of the mean compliance, including the design-
dependent pressure loading term, can be expressed as:

αC =
∂C

∂xi
= uT

s

∂Lfs

∂xi
Pf −

1

2
uT
s

∂Ks

∂xi
us (10)

and the derivative on the buoyancy is
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αB =
∂g

∂xi
=
∂(Blim

B
− 1)

∂xi
= Blim

∂( 1
B

)

∂xi
= −Blim

1

B2

∂B

∂xi
(11)

The analytical derivatives are then evaluated locally at the element level, which gen-
erates a sensitivity number for each element. Both compliance and buoyancy sensitivities
must be normalized in order to be comparable between each other. Thus, the sensitivity
numbers for buoyancy modules design using evolutionary methods can be expressed as:

αi =
|αCi|

max(|αCi)|
+ p

|αBi|
max(|αBi|)

(12)

where αCi and αBi are the sensitivities at the element level for both compliance and
buoyancy objectives, respectively. The term αCi can be expressed as:

αCi = uT
i Li

cPi −
1

2
uT
i Ki

sui (13)

where ui and Pi are the vectors with displacements and pressures at the ith element
nodes, respectively. Ki

s is the elemental stiffness matrix and Li
c is the change in the

coupling configuration (see Fig. 3) due to the ith element removal (see Fig. 2). Only
solid elements at the fluid-structure interfaces will have nonzero Pi. For all the other
elements the product uT

i Li
cPi is zero.

i i
removal

[L*][L]

Figure 2: Coupling forces configuration before and after the ith element removal.

ii(L*-L)i i

Figure 3: Change of the coupling matrices configuration
∂Lfs

∂xi

∼= (L∗ − L)i after the ith element removal.

The partial derivative ∂B
∂xi

from Eq. (11) can be evaluated at the element level as:
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(
∂B

∂xi

)i

∼= ∆B (xi) = (B∗ −B)i = (−Ai)
fs (14)

where B∗ is the buoyancy area after the ith element removal and the superscript fs
indicates the term valid only for elements at the fluid-structural interfaces. Elements in the
interior of the structure do not cause any change in B with their removal. Solid elements
at the fluid-structural boundaries cause a change of −Ai, i.e., a decrease in B equivalent to
the area Ai of the element. Then, the derivative corresponding to the buoyancy objective
is a constant valid only for solid elements at the fluid-structural interface. For all the
other elements, the sensitivity value is 0. Thus, recovering Eq. (11)

αBi =

(
∂g

∂xi

)i

=
Blim

B2
(Ai)

fs (15)

Recovering that αi must be normalized, the second term of αi is

p
|αBi|

max(|αBi|)
= (p)fs (16)

The value of αBi is either a constant higher than zero or zero. This means that its
maximum value is also αBi, which makes the result of the normalization as 1 for the solid
elements at the fluid-structural boundaries and 0 for all the other elements.

Manipulating the first term of αi and rewriting Eq. (12), the sensitivity numbers for
buoyancy modules design are

αi =

{
1
2
uT
i Ki

sui − uT
i Li

cPi + (p)fs xi = 1

0 xi = 0
(17)

It is important to point out that the term (p)fs is only valid when the inequality
constraint g is violated. The first term of αi is the strain energy of the element xi. The
second term is the derivative of the pressure loads at the element level. The elements with
the lowest sensitivities can be removed from the domain with a minimum change in the
objective function. When g is not violated, the compliance derivatives will provide the
gradient information to the optimization procedure. For buoyant structures, the minimum
compliance would be obtained with the smallest possible structure without holes, i.e., a
structure with a very small B. However, while B is getting lower, g will be violated and
the solid elements at the fluid-structure interfaces will have a high sensitivity number due
to p. It will imply in the addition of elements beside the fluid-structure boundaries and
in the expansion of the structure. Also at this step, only elements in the interior of the
structure will be removed, which generates holes and makes the algorithm to obtain a
higher B for a prescribed Vs.

A tolerance factor Btol on the buoyancy area is also included. It allows B to be
lower than Blim when the structural volume Vn reaches Vs but the algorithm still did
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not converged. For example, if the parameter Btol is adopted as 80%, when Vn = Vs the
buoyancy area can be equal or greater than 0.8 · Blim. Thus, the inequality constraint g
becomes:

g =
Btol ·Blim

B
− 1 ≤ 0 (18)

This increases the solutions space and the buoyant structure can adjust itself in order
to better support the pressure loadings, making the convergence easier.

2.3 The adapted fluid-structure BESO method

The evolutionary procedures of the presented BESO method for fluid pressure problems
and buoyancy constraints are given as follows:

1. Discretize the design domain using a finite element (FE) mesh for the given boundary
conditions. Initially, the global fluid-structure stiffness matrix must be assembled
uncoupled.

2. Couple and store a current global matrix Kn with the coupling matrices according
to the current design of the nth iteration and appropriate boundary conditions.
Thus, the current Kn becomes equivalent to the stiffness matrix from the Eq. (6).

3. Perform FE analysis on the current design to obtain the fluid-structure responses.

4. Calculate the sensitivity numbers according to the Eq. (17).

5. Apply a mesh-independency filter scheme. Project the nodal sensitivity numbers
to the design domain and smooth the sensitivity numbers for all (fluid and solid)
elements in the design domain as described in [6].

6. Average the sensitivity numbers with their previous iteration (n− 1) numbers and
then save the resulting sensitivity numbers for the next iteration.

7. Determine the target structural volume Vn+1 for the next iteration as:

Vn+1 = Vn(1± ER) (19)

where ER is the evolutionary ratio and n the number of the iteration. ER is
the percentage of the initial design domain volume and increases or decreases Vn+1

towards a structural desired final volume Vs. The target volume Vn+1 sets the
threshold αth of the sensitivity numbers.

7



R. Picelli, R. van Dijk, W.M. Vicente, R. Pavanello, M. Langelaar and F. van Keulen

8. Construct a new fluid-structure design, by switching design variables xi from 1 to 0
and from 0 to 1. Solid elements (xi = 1) which

αi ≤ αth (20)

are switched to void (fluid) condition (xi = 0). Void/fluid elements (xi = 0) are
switched to solid condition (xi = 1) when

αi > αth (21)

In order to control the fluid and void regions, a decision should be taken when the
elements must have their design variables stated as xi = 0. If the element has at
least one fluid element as neighbor, it must be turned also into a fluid element. If
the element does not have any fluid neighbors, the element must be turned into a
void. This procedure can be repeated until there is no more changes in the fluid-
void regions. Thus, fluid elements are kept together while the fluid region tracks
the fluid-structure interface and void holes appear inside the structural domain.

9. Remove and/or add the elemental stiffness matrices from the original uncoupled
global matrix according to the change of the current design.

10. Repeat steps 2-10 until the prescribed structural volume (Vs) is reached and a con-
vergence criterion is satisfied. The mean compliance convergence is analyzed as:

error =
|Cn − Cn−1|+ |Cn−1 − Cn−2|

Cn − Cn−1
≤ τ (22)

where C is the mean compliance value and τ is the tolerance usually adopted as
0.001. When error ≤ τ , the algorithm stops.

3 Results

The study case is a subsea buoy design problem. The polymer buoy is built with two
semicircles with inner and outer radius, in which the pipeline is attached to the buoy at
the inner radius. This module is enclosed by a high pressure fluid domain in consequence
by its deep water condition. Any other types of loads are considered negligible due to the
high depth pressure case. For this buoyancy module problem, one of the semicircles is
considered for design. The extended design domain is shown in Fig. 4. Figure 4(a) shows
the structural floating model immersed on a pressurized fluid domain. The boundary
conditions for the finite element model used is shown in Fig. 4(b), including symmetry
condition and a blocked degree of freedom which makes the model non-singular. The
inner edge (represented by a thick black line) is considered as non-design domain, i.e., it
remains fixed during the whole algorithm.
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Figure 4: Design problem for optimization: (a) complete fluid-structure model and (b) design domain
using half of the model including boundary conditions for the structure.

For the design problem from Fig. 4 two initial solutions are considered, one starting
from the initial full design and another with an initial semicircle solution that covers 75%
of the design domain. The fluid-structure model including the design domain is discretized
with 51513 four-node finite elements. The evolutionary ratio (ER) is chosen to be 5%
and the final volume Vs is adopted as 30%. Figure 5 presents the initial solutions and the
final topologies for both cases, as well as a comparison case in which the fluid-structural
interfaces are kept fixed. The buoyancy area limit Blim is chosen as 0.1856 m2, which is
the same area of the initial semicircle solution from Fig. 5(b-c). The penalty factor is
chosen as p = 1 · 105. The tolerance in buoyancy is adopted as Btol = 80%.

Case 1 Case 2 Case 3
(a) (b) (c)

Figure 5: Buoy module designs with topology optimization: (a) Case 1: full design domain and final
topology; (b) Case 2: initial semicircle solution and final topology; (c) Case 3: initial semicircle solution
and final topology with fixed fluid-structure interfaces.

It is possible to observe that the final topologies (from Fig. 5(a) and 5(b)) mainly cover
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the area of the initial guess solution. It characterizes a strong influence from the starting
topology. Also, it indicates that the designer should choose the initial guess according to
some desired final solution area. This behavior is expected due to the floating conditions.
When pressure is applied all over a floating structure that can change its shape and
topology, the structure starts seeking for a equilibrium state behaving like bubbles as
found in the nature. The final results in this work are bubble-like structures.

Table 1 presents some objective data for all the cases from Fig. 5. Using the same
amount of solid material, case 2 presents the stiffest structure. It represents a gain around
35% in stiffness if compared to the case 3, with a reduction in buoyancy area of only less
than 16%. Case 1 did not showed many gains in comparison with case 3. Also, it presented
some very small bubble-like structures that contributes to local minima findings. Figures
6 e 7 presents the evolutionary history of the buoyancy area and the mean compliance,
respectively, for the case 2.

Table 1: Objective data for the cases from Fig. 5.

Case 1 Case 2 Case 3

Vs 30% 30% 30%
B 0.1661 m2 0.1575 m2 0.1856 m2

Compliance 4.3030·10−4 Nm 3.7635·10−4 Nm 5.7643·10−4 Nm
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Figure 6: Evolutionary history of the buoyancy area for the case 2.

Figure 8 presents the strain energy distribution of the final structure in comparison with
the case in which the boundaries are kept fixed. It can be observed that for the bubble-like
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Figure 7: Evolutionary history of the buoy module’s mean compliance for the case 2.

structure the strain energy distribution is much smoother than for the comparison case.
Also, this result is reflected in the mean compliance value, which is around 35% smaller
for the bubble-like buoy design. One important point to mention is that the proposed
buoy module can be used in a fluid region where the drag forces are negligible, i.e., where
the loads due to the subsea fluid flow are much smaller than the deep water pressure
loads. If drag forces are considered further analysis should be carried out.

C = 3.7635·10−4 Nm C = 5.7643·10−4 Nm
B = 0.1575 m2 B = 0.1856 m2

Figure 8: Strain energy distribution for the buoyancy module design with the proposed methodology
and the case where the boundaries are kept fixed.
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4 CONCLUSIONS

- A new methodology is proposed to seek alternative structural designs in offshore
engineering, specifically in buoyant structures design.

- Design-dependent pressure loadings are handled straightforward with the evolution-
ary optimization methods.

- Comparing results with a case where the pressure loads are fixed, a stiffer structure
can be designed moving the fluid-structure interfaces and fulfilling some buoyancy
requirements simultaneously.

- The final topologies showed to be bubble-like structures, which strengthens the
proposed methodology.

- If drag forces are negligible, the proposed solutions can inspire new buoyancy mod-
ules to be used in deep water conditions for support of oil pipelines.
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