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Abstract. The mechanism of bitemporal hemianopia is still unclear. Previous research 

suggested that the nerve fibre packing pattern may contribute to the selective damage of nasal 

(crossed) nerve fibres. Numerical models were built using finite element modelling to study 

the biomechanics of optic nerve fibres. The sensitivity of the mechanical behaviours of the 

nerve fibres to variations of five parameters in the nerve fibre model were investigated using 

design of experiments (DOE). Results show that the crossing angle is a very significant factor 

that affects a wide range of responses of the model. The strain difference between the crossed 

and the uncrossed nerve fibres may account for the phenomenon of bitemporal hemianopia. 

This work also highlights the need for more accurate material properties of the tissues in the 

model and an improved understanding of the microstructure of the optic chiasm.  

   
 

 

1 INTRODUCTION 

In the human visual system, information from the right visual field (VF) is processed by 

the left side of the brain and vice versa. To achieve this, there is a partial crossing of optic 

nerve fibres in the optic chiasm. The nasal (crossed) fibres lie centrally in the chiasm and 

cross to the opposite side of the brain while the temporal (uncrossed) fibres pass directly back 
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to the same side of the brain in the lateral parts of the chiasm. Compression of the chiasm 

typically produces a pattern of visual loss known as a bitemporal hemianopia due to selective 

damage to the crossed nerve fibres which arise from the nasal hemiretinae (and hence 

represent the temporal visual fields).   

In bitemporal hemianopia vision is lost in the temporal half of the VFs of both the right 

and left eyes. This pattern of visual loss is highly localizing to the chiasm and it has many 

known causes, most of which involve compression of the chiasm. Rarer causes of chiasmal 

compression include craniopharyngiomas, germinomas, metastatic tumours, and giant carotid 

aneurysms 
[1 ,2]

 but the most common cause is a pituitary tumour which compresses the 

chiasm from below as it grows up out of the pituitary fossa (a depression of bone housing the 

pituitary gland) 
[1 ,3]

. Vision may recover rapidly after surgical decompression 
[4 ,5]

 but this is 

not always the case. Although the fact that chiasmal compression by a pituitary tumour results 

in bitemporal hemianopia is well-recognized, the reason why compressive lesions of the 

chiasm selectively damage the crossed nasal nerve fibres is still not clear.  Previous theories 

suggesting that damage is due to the effects of stretching 
[6]

 or alteration in blood supply 
[7]

 

cannot explain the sharp cutoff along the vertical meridian of the visual fields which is 

observed clinically. 

In a previous study, we used finite element modelling (FEM) to simulate optic chiasm 

compression at different length scales (Figure 1). The results of the macroscopic model 

agreed well with the limited experimental results available. Unfortunately, the data necessary 

to populate the various parameters used in the microscopic nerve fibre model are scarce in the 

literature and, even when these parameters are reported, the values can vary considerably 

from study to study. Accordingly, this paper investigated the sensitivity of models describing 

the mechanical behaviour of nerve fibres to variations in the values chosen to represent 

relevant material properties and geometry. 

2 METHODS AND MATERIALS 

Design of Experiments (DOE) was used to investigate the impact of uncertainty of these 

factors on the output, or response, of the RVE model. DOE is an established tool which 

permits better understanding and control of variability in manufactured products. There has 

been a recent increase in interest in using DOE for sensitivity analysis in biomechanics 
[8-10]

. 

In particular, DOE provides information about the effects of possible interactions between 

factors, something which is not obtainable when testing one factor at a time (OFAT).  

The chiasmal compression model was based on our previous research and is briefly 

described here. The geometry of the chiasm was derived from a 3D-reconstruction of the head 

slices available at the ‘US visible human project’ 
[11]

. The optic chiasm, optic nerves and optic 

tracts were considered to be composed of isotropic nerve tissue surrounded by a pial sheath. A 

spherical balloon representing a growing tumour was inflated first and then translated 

inferior-superiorly so as to elevate and compress the chiasm from below (Figure 1). 

Inspection of the MRI scans of patients experiencing chiasmal compression 
[12-14]

 indicates 

that it is reasonable to use an initially-spherical balloon to represent the tumour. Micro-scale 

models were subsequently generated using representative volume elements (RVE) to 

investigate the strain distributions within nerve fibres. The two models are schematically 

illustrated in Figure 1. The strain state of a point in the central part of the chiasmal model was 
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extracted and applied to the RVE models to generate boundary conditions (Figure 2) 
[15 ,16]

. 

 

 

 

 
Figure 1. The macroscopic model of the optic chiasm and tumour and the microscopic RVE models. (OC: optic 

chiasm; ON: optic nerve; OT: optic tract; MECS: material of the extracellular space.) 

 

 
Figure 2. The strain state of a point in the chiasm was applied on the RVEs. 

2.1 Representative volume elements 

A RVE corresponds to a microstructural subdomain that is representative of the entire 
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microstructure 
[17]

. The RVE can repeat itself to form the larger-scale structure. Therefore, 

periodic boundary conditions must be adopted to include the effect of the surrounding 

medium (RVEs). The strain components from the macroscopic model and the periodic 

boundaries were applied to the RVE model using constraint equations. The computational 

simulations were performed using ANSYS Mechanical APDL (Ansys, Inc., Canonsburg, PA). 

The structures of the RVE are indicated in Figure 1.  

2.2 Periodic boundary conditions 

Xia et al. 
[18]

 developed a periodic boundary condition for RVEs which can easily be used 

in FEM analysis. The displacements of the boundary surfaces of a RVE are given by: 

     ̅       
   (1) 

where    is the Cartesian coordinate of a point,  ̅   is the average strain and   
  is the 

periodic part of the displacement on the boundary faces which is unknown. Considering two 

opposite faces with their normal along the    axis (Figure 1), the displacements on these two 

faces can be written as: 

   
  
  ̅    

  
   

      (2) 

   
  
  ̅    

  
   

      (3) 

where    refers to the positive    direction and    refers to the negative    direction. 

As opposite faces in the deformed RVE should have the same shape so that they can repeat 

to form a continuous body, the local fluctuations   
    and   

    must be identical on these two 

faces. Therefore, the relative displacement between these two faces is: 

   
  
   

  
  ̅  (  

  
   

  
)   ̅     

 
   (4)  

where  ̅   is the average strain which is obtained from the macroscopic model and    
 
 are 

known from the geometry of the RVE. 

Equation (4) can be applied to the RVE using constraint equations in ANSYS. In order to 

apply these constraint equations, the mesh on opposite faces of the RVE had to be identical. 

This was achieved by meshing one face first and then copying the mesh to the corresponding 

opposite face. Because there were so many nodes involved, the ANSYS Parametric Design 

Language was used to find each corresponding node pair and impose constraint equations on 

them. The node at one corner of the model was fixed to avoid rigid body motion. As large 

deflection analysis was used to help convergence, dummy nodes in ANSYS were used to 

allow the deformation applied to the RVE to increase gradually.  

Using the procedures described above, strain loads from the macro-scale model were 

imposed on the RVE, which allowed transition of the actual strains from the macroscopic 

deformation field to the micro level.   

3 DESIGN OF EXPERIMENTS 

A five-factor two-value, or two-level, full factorial analysis was designed to investigate the 

effect of five parameters in the RVE model systematically. Full factorial analysis was used to 
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allow examination of the effects of individual factors and all possible interactions of those 

factors. The five factors and their levels are listed in Table 1. The definition of these factors 

will be introduced later. The high and low levels of a given factor were based on a reasonable 

range derived from data reported in the literature.     

 

Table 1. Factors and their levels of the DOE study 

Factor Factor name Low level (-1) High level (1) 

A Cross-sectional shape 
 

Rounded-cornered 

square 

 
circle 

B g-ratio 0.6 0.8 

C Sheath stiffness  
1/3 

(of the axon’) 

1/2 

(of the axon’) 

D MECS stiffness  
1/20 

(of the axon’) 

1/10 

(of the axon’) 

E Crossing angle 0 ˚ (parallel) 90 ˚ (perpendicular) 

  

 

Table 2 shows the design matrix that reflects all possible combinations of high and low 

levels for each factor. The high and low levels of each factor were coded as +1 and -1, 

respectively. A total of 32 (2
5
) simulations were performed based on the configurations in 

Table 2 using ANSYS, and the simulation responses were then processed using Minitab 

which is a statistics package (Version 15, State College, PA). 

Two cross-sectional shapes were chosen as either a circle or a rounded-corner square. 

These geometries were based on the microscopic appearance of nerve fibres within the optic 

nerve. Both shapes had the same cross-sectional area which was based on the nerve fibre area 

quoted in the literature 
[19]

. Note that the change of cross-sectional shape necessarily resulted 

in a change in the volume fraction of nerve fibres (i.e. volume of fibres / total volume of the 

RVE). Fibre fractions for the circular and rounded-corner square cross-sections were 78.5% 

and 90%, respectively. Of note, 90% is believed to be the fibre fraction in the optic nerve 
[20]

. 

The ratio of the axonal diameter divided by the diameter of the whole nerve fibre (axon 

plus its myelin sheath) is called the g-ratio. For mammals, the g-ratio usually varies between 

0.6 and 0.8 
[21 ,22]

. In this paper, the g-ratio for nerve fibre with a rounded-corner square cross-

section was calculated as the horizontal width (see figure in Table 1) of the axon divided by 

the width of the nerve fibre. 

Both the von Mises strain and the strain value along the axonal direction (axonal strain) 

were reported as the latter is arguably a better measure of axonal injury in brain white matter 
[15 ,23]

, although whether this applies to the chiasm is still unclear. The responses and their 

abbreviation are listed in Table 3.  
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Table 2. Design of the simulations 

Simulation 

No. 
A B C D E 

Simulation 

No. 
A B C D E 

1 -1 -1 -1 -1 -1 17 -1 -1 -1 -1 1 

2 1 -1 -1 -1 -1 18 1 -1 -1 -1 1 

3 -1 1 -1 -1 -1 19 -1 1 -1 -1 1 

4 1 1 -1 -1 -1 20 1 1 -1 -1 1 

5 -1 -1 1 -1 -1 21 -1 -1 1 -1 1 

6 1 -1 1 -1 -1 22 1 -1 1 -1 1 

7 -1 1 1 -1 -1 23 -1 1 1 -1 1 

8 1 1 1 -1 -1 24 1 1 1 -1 1 

9 -1 -1 -1 1 -1 25 -1 -1 -1 1 1 

10 1 -1 -1 1 -1 26 1 -1 -1 1 1 

11 -1 1 -1 1 -1 27 -1 1 -1 1 1 

12 1 1 -1 1 -1 28 1 1 -1 1 1 

13 -1 -1 1 1 -1 29 -1 -1 1 1 1 

14 1 -1 1 1 -1 30 1 -1 1 1 1 

15 -1 1 1 1 -1 31 -1 1 1 1 1 

16 1 1 1 1 -1 32 1 1 1 1 1 

 

According to the literature, the stiffness of the myelin sheath is two to three times softer 

than the axon 
[20 ,24 ,25]

. The material properties of MECS (material of the extracellular space) 

were assumed to be approximately as soft as cerebrospinal fluid. All material properties were 

modified from those of the axon. The material properties of the axon were represented using a 

second-order Ogden hyperelastic model (   =1044 Pa,    =1183 Pa,   = 4.309 and    = 

7.736), based on the material properties of brain white matter 
[26]

.   

  

Table 3. Simulation responses and their abbreviations 

Response description Abbreviation 

Maximum von Strain of the axon M_VON_A 

Maximum axonal strain of the axon M_AXONAL_A 

Maximum von Strain  of the sheath M_VON_S 

Maximum axonal strain of the sheath M_AXONAL_S 

4 RESULTS 

The responses of the 32 simulations are listed in Table 4. The effects for individual and 

coupled variables were analysed using Pareto charts in Minitab. The effect of an individual 

variable is called a main effect and the effect of coupled variables is the interaction effect. In 

the Pareto chart, the horizontal bars represent the effects of individual factors or interactive 

effects of the factors. Bar lengths exceeding the vertical line are statistically significant. The 
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vertical line was generated by Minitab using the method of Lenth 
[27]

. Because one numerical 

simulation yields only one set of results, there are no replications which are necessary to 

evaluate error in physical experiments. Lenth’s method is specially designed for the study of 

numerical simulations to overcome this issue. 

 

Table 4. Responses of the 32 simulations 

Simulation No. 

Max.  

von Mises 

strain 

of the axon 

Max.  

axonal strain 

of the axon 

Max.  

von Mises 

strain 

of the sheath 

Max.  

axonal strain 

of the sheath 

1 0.095619 0.053948 0.171405 0.056956 

2 0.086273 0.053082 0.156530 0.058435 

3 0.100840 0.052520 0.142738 0.057992 

4 0.095726 0.051843 0.143253 0.060221 

5 0.094395 0.053729 0.172719 0.053934 

6 0.085791 0.053161 0.159572 0.054577 

7 0.099833 0.052309 0.143009 0.054803 

8 0.095244 0.051891 0.135045 0.056349 

9 0.100754 0.052589 0.181271 0.057334 

10 0.098719 0.054016 0.168807 0.055366 

11 0.106652 0.051703 0.150942 0.055994 

12 0.105354 0.052081 0.149031 0.057720 

13 0.099696 0.052190 0.182781 0.054884 

14 0.098397 0.053500 0.172297 0.054181 

15 0.105328 0.051330 0.145314 0.054069 

16 0.104942 0.051614 0.139543 0.054218 

17 0.105401 0.065002 0.185658 0.076603 

18 0.092370 0.066007 0.166138 0.086871 

19 0.109700 0.062627 0.154227 0.085210 

20 0.099665 0.067027 0.152431 0.088942 

21 0.105934 0.063867 0.188000 0.069948 

22 0.091748 0.064138 0.170929 0.078286 

23 0.110354 0.061364 0.156133 0.069563 

24 0.100175 0.064566 0.146779 0.073685 

25 0.106110 0.063584 0.192016 0.092820 

26 0.105250 0.070967 0.182798 0.094405 

27 0.110683 0.063399 0.174352 0.095367 

28 0.107683 0.069243 0.159906 0.092723 

29 0.107646 0.061701 0.200742 0.075726 

30 0.104451 0.068678 0.188148 0.085365 

31 0.109871 0.061282 0.159097 0.079697 

32 0.107528 0.065909 0.150352 0.078357 
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Figure 3. Pareto analysis for various responses of the model. A: cross-sectional shape; B: g-ratio; C: sheath 

stiffness; D: MECS stiffness; E: crossing angle. Only the 30 largest effects are shown. 

Among the four responses listed in Table 3, two (M_AXONAL_A, M_AXONAL_S) were 

predominantly affected by the crossing angle. For these responses, the effect of crossing angle 

was 472% and 240% greater than that of the second most important factor, respectively.    

For the remaining two responses (M_VON_A, M_VON_S), crossing angle was ranked as 

the second most significant factor, 8.2% and 51.2% less significant than the most significant 

factors, respectively. For M_VON_S, g-ratio was the most significant factor while MECS 

stiffness was the most significant response for M_VON_A.  

5 CONCLUSIONS 

The effect of varying five parameters of the nerve fibre model was systematically analysed 

using DOE. The results indicated that crossing angle was the leading factor influencing all the 

responses of the model. It should be noted that the range of variation of the g-ratio and the 

stiffness of materials in this sensitivity study were based on the ranges reported in the 

literature derived from different animals. However, for an individual person, the g-ratio will 
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vary only slightly, or even remain constant 
[22]

. In other words, a large variation of g-ratio 

from 0.6 to 0.8 would be unlikely to occur in a single optic chiasm. Similarly, the MECS 

stiffness would be likely to remain fairly constant in a single individual. 

We can conclude that, for any given g-ratio and MECS stiffness, the crossing angle is the 

most significant factor that affects a wide range of responses of the model. It can be seen from 

Figure 3 that an increase in crossing angle from 0˚ to 90 ˚ resulted in greater values of all four 

responses. Thus, the strain difference between crossed and uncrossed nerve fibres may well 

account for the phenomenon of bitemporal hemianopia.  

Interestingly, compared to the crossing angle and g-ratio, cross-sectional shape was not a 

very significant factor though it should be noted that only two cross-sections were considered 

in this study. In reality, though, the actual cross-sectional geometry of nerve fibres is 

significantly more complicated than the two regular shapes used in this study. 

It should be pointed out that, in this study, fibre orientation and the location of 

macroscopic strain were fixed, as in Figure 2. The effect of altering orientation in the RVE 

models was not considered. Before this can be done, a greater understanding of the 

microstructure of the optic chiasm is needed in order to determine the actual orientation of the 

nerve fibres within the chiasm. In addition, this work highlights the need for more accurate 

information about the material properties of the tissues used in the model.  
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