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Abstract. The stress field in a soil due to external loads is basically determined by the size 

and shape of the loaded area and the thickness, uniformity and stress-strain properties of the 

soil mass. Predictions of stress and settlements in soils when the stress levels are far from 

failure and stress-strain dependence is linear can be derived assuming that soil is a 

homogeneous, isotropic and linear elastic material. In this work, numerical solution based on 

network method is presented for this kind of problems. For cases of linear and triangular load 

distribution over soils of infinite thickness, where theoretical solutions based on Boussinesq 

works exist, comparisons of steady state vertical stress within the soils are carried out to 

check the reliability of the proposed model in its application to more complex 2-D problems.    
 

 

1 INTRODUCTION 

Interrelationships dependency of stresses and strains [1] have been of great potential value 

to civil engineers when settling the continuous stress redistribution within the soil caused by 

externally applied loads [2]. For the elastic theory to be applied in soils there must be constant 

ratios between stresses and the corresponding strains, a requirement that goes beyond the 

scope of the lineal elasticity. Stress distribution depends on the thickness and homogeneity of 

the soil mass, the size and shape of the area to be loaded and the mechanical properties of the 

soil. Stress arrangement in depth determines the magnitude of the settlements; this have to be 

numerically determined, except in few cases in which it can be analytically solved from the 

works of Boussinesq [3]. 
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For any kind of 2-D distributed loads, this communication presents a numerical model 

capable of providing accurate and fast computationally, steady state solution of stresses and 

strains in a finite or semi-infinite mass of soils.  

The model is based on network simulation method [4], a powerful numerical tool that has 

already been successfully applied in other engineering problems; heat transport, 

electrochemical reactions and transport through membranes [5-7]. The start point for the 

design the network model is the spatially discretized finite-difference governing equations 

that come from the PDEs that set the mathematical model of the problem. Each term of those 

equations is an electric current of a suitable branch that is balanced with the currents of the 

other branch in a common node. So, on the one hand, the network model of a volume element 

is formed by as many branches as terms are in the equation; on the other hand, NxNy volume 

elements are connected each other (by ideal electric contacts) to form the whole network 

model of the domain.  

The model contains resistors to implement lineal terms of the equation and controlled 

current sources to implements coupled terms. The last, whose output current is specified by 

software as an arbitrary function of the dependent variables, are also used to implement 

certain types of boundary conditions. In this way, very few components are required and, as a 

consequence, very few programming rules are used for the implementation of the model. 

Once this is designed, it is run in the electric circuit simulation code Pspice. Output data are 

post-processing with Matlab for a graphical representation. To check the reliability of the 

model and its related numerical simulation two applications are presented, one concerning an 

uniform pressure (load) and other concerning a triangular pressure distribution, both on an 

infinite strip. Comparisons are made with the semianalytical solution derived from 

Boussinesq [3]. 

2 THE GOVERNING EQUATIONS 

Navier equation [1],  

   2 ·     u u 0           (1) 

represents the solution of the linear elastostatic problem in terms of displacements u, with λ 

and μ the Lamé’s constant and the shear modulus, respectively. For the general or mixed 

case, the displacements at the boundary 
b

iu are directly applied, while tractions 
b

it  must be 

indirectly applied as a function of displacements, Figure 1. 

 

Figure 1: Boundary conditions for the 2D-elastic problem in rectangular coordinates 
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The governing equations for the 2D plane strain problem can be expressed in rectangular 

coordinates in the form  
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 (2)  

On the other hand, 2D plane stress problems can be expressed with the same equations that 

the plane strain case, replacing the value of the constant λ in equation (1) for an adequate 

value [1]. In the mixed case, the complete mathematical model needs relations between 

tractions imposed at the boundary and the unknown displacements. From the stress relations 
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the necessary relations, in terms of displacements, are: 
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 (4)  

3 THE NETWORK MODEL 

Equations (2) expressed in finite difference form is the base for the design of the network 

model which is implemented in such a way that its equations are formally equivalent to those 

of the physical process. A detailed description of the design can be found in Morales et al [3]. 

The entire domain is substituted by two electrical circuits formed by Nx x Ny volume 

elements that reproduce the equilibrium forces in both components of the displacements, 

Figure 2. The electric potential in each circuit represents a rectangular component of the 

displacement. 

 

Figure 2: Circuits for equilibrium equation at x-direction (a) and y-direction (b). 
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To simulate the elastic relation is enough the use of simple resistors and a controlled current 

source, a special component contained in the libraries of the circuits simulation codes capable 

of assuming both, non-linearities as well as coupled conditions in the equations. As regards 

displacements boundary conditions, these are easily implemented by a constant voltage 

sources, Figure 3; tractions at the boundary are implemented by controlled voltage sources, 

which reproduced the coupled terms in the equations (3), Figure 4. 

 

Figure 3: Implementation of a boundary displacement: a) Physical model, b) network model.  

a) 

b) c) 

Figure 4: Implementation of traction boundary condition: a) Physical model, b) and c) network model. 
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4 APPLICATIONS 

4.1 Uniform pressure on an infinite strip 

Figure 5 (left) shows the scheme of this application. The domain is a square sample of 5 m 

(case a) and 10 m (case b) side, with a strip (B=1) symmetrically located at its top. Q= 100 

kN/m. A grid size of 2020 (case a) and 4040 (case b) volume elements is assumed. Young 

modulus, E=3500 kN/m
2
 and Poisson coefficient, =0.3. For this application, Figure 6 and 7 

show, at the left, the vertical stress for cases a and b, respectively, while analytical solutions 

are depicted, for comparison, at the right of each figure. In addition, Von misses stresses 

obtained numerically are shown for each case in Figure 8. As expected, for the larger length 

numerical solution is closer to analytical, the last applied to a soil of infinite thickness.  

  

Figure 5: Uniform load (left) and triangular load (right) schemes 
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Figure 6: Vertical stress. Network method (left), analytical solution (right). L=H=5 m 

 

Figure 7: Vertical stress. Network method (left), analytical solution (right). L=H=10 m 
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Figure 8: Von Mises stress for the uniform load. L=5 m (left; L=10 (right)  

4.2 Triangular pressure on an infinite strip 

Figure 5 (right) shows the physical scheme. For this application the domain is, again, a 

square sample of 5 m (case a) and 10 m (case b) side, with a strip (B=1) at the centre of the 

top side. Qmax = 100 kN/m. A grid size of 2020 (case a) and 4040 (case b) volume elements 

is assumed while Young modulus´and Poisson coefficient have the same values of the former 

application. Figure 9 and 10 show, at the left, the vertical stress for cases a and b, 

respectively; analytical solutions are depicted at the right of the figures. Finally, numerical 

Von misses stresses are shown, for each case, in Figure 11.  
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Figure 9: Vertical stress. Network method (left), analytical solution (right). L=H=5 m 

 

 

 
Figure 10: Vertical stress. Network method (left), analytical solution (right). L=H=10 m 

 

 

As shown, for a square sample of soil of 10 m side, numerical solution is quite close to 

analytical. This means that, on the one hand, real cases for which the soil thickness is infinite 

can be simulated by square domains of finite side and, on the other hand, the proposed 

method is reliable when applied to other load distribution over irregular surfaces.  
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Figure 11: Von Mises stress for the uniform load. L=5 m (left; L=10 (right)  

 

5 CONCLUSIONS  

Network method is a powerful numerical tool for the solution of stress distribution in 2-D 

soils assuming an elastic behavior. The presented applications, based on linear and triangular 

load distributions over a strip, for which comparisons with theoretical solutions of Boussinesq 

are carried out, allow of checking the reliability of the proposed method.    
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