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In this paper, we have demonstrated an automated CED process using Upwind- Least
Squares Finite Difference (LSFD-U) meshless solver with the points generated by
Cartesian grid methods. The point distributions around complexr geometries are done
easily and quickly without any human intervention. The entire sequence of the CFD
process involving geometry redfinition, point generation and flow solution are carried
out in an automated way in a scripted environment. Towards demonstrating a 2D
automation process, a turbulent flow over a MDA-3 element is simulated for various
flap positions using LSFD-U RANS solver. For the 3D demonstration, the store
tragectory prediction is done using LSFD-U FEuler solver. The complete trajectory
prediction is automated by coupling the Cartesian grid generator, the LSFD-U solver
and a 6-DOF simulator.

1 Introduction

Meshless solvers show a lot of promise in industrial computations involving complex ge-
ometries. One of the important reasons behind this expectation is, generating a set of
points, needed for the meshless solvers, is expected to be easier as compared to discretizing
the domain into non-overlapping volumes, as needed by the finite volume methodology.
But till date, in the course of development of meshless methodologies, most of the signif-
icant works have assumed a point distribution from an established grid generator [1-4],
with the exception of our earlier work [5], where the meshless solver LSFD-U is projected
as a Cartesian grid method. Here the point distribution needed for the generalized finite



Mohamed Yousuf, Munikrishna Nagaram and Balakrishnan Narayanarao

difference solver LSFD-U is obtained from a hybrid Cartesian grid. This way, limitations
of the Cartesian grids as applied to a classical finite volume solver, like the appearance
of small cut cells, are obviated, while the advantage in terms of automation is retained.
Therefore, the work presented here can be considered as the logical next step in evolution
of the LSFD-U solver, where its potential in an automated CFD process is demonstrated.

Two problems, one each in 2D and 3D, with representative geometric complexity, have
been chosen for this demonstration. The 2D demonstration is towards optimizing the
flap position of the MDA-3 element airfoil, for maximizing the cl,,q,. A CFD process for
accomplishing this task, should be in a position to generate the grid (points distribution,
in the present case) in an automated way, for every new position of the flap and the cl,,q,
and a4, for this position are obtained by the repeated use of the flow solver for the entire
range of a. Towards this objective, for a sequence of five flap positions, the solutions for
a given flow condition are obtained in an automated way using the LSFD-U based RANS
solver on a hybrid Cartesian point distribution.

For 3D demonstration, the inviscid LSFD-U solver is used for solving a store separation
problem [11]. The flow solver is validated for store separation studies by simulating a
sequence of five pre-defined store positions including the carriage position. The Cartesian
point distributions are generated in an automated way and the store loads are computed
using the LSFD-U solver. With this demonstration, the store trajectory is predicted by
coupling the LSFD-U solver with a 6-DOF simulator and compared with the experimental
results.

2 Numerical Procedure

Numerical procedure involves a complete coupling of point generator, flow solver and a
6-DOF simulator in case of the store separation study. The following sections briefly
describe about point generation method, meshless solver and the equations solved for a
rigid body motion.

2.1 Point Generation

The field points generation can be done easily and quickly around any complex geometries
using a Cartesian grid method which divides the cells recursively until it resolves to
the geometry. The input to the point generator can be a triangulated geometry for a
full Cartesian grid (inviscid grid) or a viscous padding (boundary layer grids) wrapped
around the body for a hybrid Cartesian grid. The recursive cell division continues until
the nearbody field points spacing are comparable to the surface resolution of the body
in their vicinity or the viscous padding front. The points are classified into groups based
on the directionality exhibited by its neighbours in the local cloud [5]. A typical local
cloud is shown in Figure 1l.a. The points whose neighbours exhibit no directionality
are classified as “general type”. The points are classified as “Cartesian type” where the
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neighbours in the local cloud are aligned in x-y directions and “structured type” where the
neighbours in the local cloud are aligned in &-1 directions. For the general and Cartesian
type points, the fluid flow governing equations are solved in x-y co-ordinate system and
for the structured type points, equations are solved in the rotated co-ordinate systems.
In general, the viscous padding which is wrapped around the body exhibits streamwise
and normal directionality. The points inside the viscous padding fall under the category
of structured type. The interface between the Cartesian front and viscous padding are
treated as general type points and the Cartesian field points are Cartesian type. The
Figure 1.b illustrates the region of all point types.
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a. Typical local cloud b. View of hybrid Cartesian grid

Figure 1: Local cloud of “general type“ point ¢ and a typical hybrid Cartesian mesh

2.2 LSFD-U Flow Solver

The conservative form of 2D compressible Reynolds-Averaged Navier-Stokes equation can
be expressed as follows:

oU a(F[ — Fv) 8(G1 — Gv)
ot + ox * dy

—0 (1)

where, conservative variable vector U = [p pu pu e}T, Fy, G are the inviscid fluxes in the
x and y direction, respectively, and Fy,, Gy are the viscous fluxes in the x and y direction,
respectively.

The flow solver employs the LSFD-U [2, 6] strategy, which is essentially an upwind gen-
eralized finite difference procedure based on the method of least squares. The solver
incorporates an upwind procedure for discretizing the inviscid fluxes and robust viscous
discretization strategy chosen based on the positivity for the viscous fluxes [7]. Higher
order accuracy is achieved using a linear reconstruction procedure in conjunction with the
Venkatakrishnan limiter [8]. The Spalart-Allmaras [9] turbulence model is employed for
the transport of the eddy viscosity. The discretization strategy employed in the LSFD-U
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solver exploits the directionality exhibited by the local cloud. The details of the discretiza-
tion procedure can be had from references [5, 7]. Details of S-A model implementation
are presented in reference [10].

2.3 6-DOF Model

The 6-DOF rigid body motion of the store, which includes 3 translations and 3 rotations, is
calculated by numerically integrating Newton-Euler equations of motion. The translation
and linear velocities of the store C.G is governed by Newton’s laws of motion which
are numerically integrated in the inertial frame of reference. The resultant forces acting
on the store include aerodynamic forces, gravitational forces and external forces such as
ejector forces. The resultant forces are kept constant over the discrete time interval of the
integration. On the other hand, the angular motion of the store can be easily written in
the body frame of reference. The resultant moments, which includes aerodynamic, ejector
and damping, are transformed to the body frame of reference and kept constant over the
discrete time interval. The Runge-Kutta 4 order time integration method is used for
solving Euler equations of motion.

3 Results
3.1 MDA-3 Element Flap Deployment

One of the important steps in the design of a high lift system involves optimizing the
flap/slat position for either maximum lift or mamimum lift to drag ratio. This inturn
requires redefining the flap/slat positions repetitively within the bounds defined in a
parametric space. The proposed CFD process is a demonstration towards automating
this exercise using the meshless solver technology.

The turbulent flow past a MDA 30P-30N airfoil [12] is simulated at M, = 0.20, Res
= 9.0 x 10° and an angle of incidence of 16.21°. In the reference configuration (for
which experimental results are available), flap is deployed by an angle of 30°. In order to
demonstrate automation, the flap is deployed between 20° - 40° with the interval of 5°.
This is illustrated in Figure 2.a and 2.b. Viscous padding grids are generated around
each element and they are also allowed to move along with the geometry. Cartesian mesh
is generated automatically for every new flap position. The automation cycle is briefly
described in Figure 2.c. While the body has 5,300 points, the number of points in the
hybrid grid is around 0.47 million. The hybrid Cartesian grid for the flap deployed at 30°
is shown in Figure 2.d. Roe flux formula [13] is employed for the interface flux calculation.

Pressure and skin friction coefficients are plotted for all flap positions along with experi-
mental values corresponding to the flap deployment of 30° in Figure 3.a and 3.b, respec-
tively. The comparison shows good agreement with the experimental values available for



Mohamed Yousuf, Munikrishna Nagaram and Balakrishnan Narayanarao

ng

a. Flap positions

[ Default Flap position ]

|

(" Viscous padding gridw

|

Cartesian Grid Generation

20deg.

LSFD-U RANS solver
| Results
New Flap Position

b. Closure view c. Automation cycle d. Hyb. Cartesian grid

e. Hybrid Cartesian grid (closure view)

Figure 2: Flap positions of MDA-3 element.

30° flap position. From the pressure distributions presented in Figure 3.a, it is clear that
the flap is not stalled yet for the deflections considered and as a result experiences higher
suction peaks and therefore greater lifts for progressively increasing flap deflections. The
increase in the flap lift also results in an increased upwash at the slat and main element,
further enhancing the lift experienced by these elements. This becomes further evident
when we look at the lift variation against flap deflection presented in Figure 3.c. The lift
and drag experienced by the high lift section for the standard 30 degree flap deflection
case are compared with experimental data and the results obtained by HiFUN [14], an
industrial standard finite volume solver in Figures 3.c and 3.d. A good prediction of the
lift and over prediction of the drag by CFD for the case considered are in line with the
available results from the literature [12, 15].
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Figure 3: MDA-3 Flap deployment study M., = 0.20; AOA = 16.21°; Reo, = 9.0x10°

3.2 Store Trajectory Prediction

In order to demonstrate an automated process in 3D, a store separation study involving
a generic wing, pylon and moving finned store [11] is considered. This experimental
test case involves predicting the store loads and trajectory as obtained from a captive
trajectory system for a duration of about 0.9s at 0.01s time intervals. For the purpose of
validating flow solver for store separation studies, the methodology is demonstrated for a
few pre-defined positions of the store and aerodynamic coefficients at these positions are
compared with experimental data. The geometry of the wing and store considered for
the problem is shown in Figure 4.a. Inviscid simulations are done for five pre-identified
store positions for a freestream Mach number of 0.95 and a wing incidence of 0 degrees.
The store positions are shown in Figure 4.b and a typical Cartesian grid around the wing
and store geometry is shown in Figure 4.c. The experimental id, position number and
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time after the store release for the selected pre-defined positions are tabulated in Table 1.
While the surface grid is generated once with required fineness and is unchanged, the
volume grid (point distribution) is regenerated for every store position. The surface grid
has 126,233 points and 252,105 triangles. Apart from comparing the LSFD-U results
with the available experimental data, an intercode comparison with a finite volume solver
HiFUN is also presented. The volume grid details for all positions, as needed by the
LSFD-U and the HiFUN solvers, are tabulated in Table 2. Inviscid fluxes are computed
using vanLeer scheme [16] for these simulations.

a. Geometry b. Store positions c. Cartesian grid

Figure 4: Store at pre-defined positions

Experimental ID  Positions Time after store release (sec)

1 4 0.00
7 16 0.10
8 23 0.17
9 31 0.25
10 38 0.32

Table 1: Store positions and corresponding time

Experimental 1D Volume grid
Number of grid points (LSFD-U) Number of cells (HiFUN)
1 1,645,030 3,298,474
7 1,713,043 3,092,507
8 1,718,914 3,160,202
9 1,730,551 3,200,055
10 1,729,110 3,222,079

Table 2: Grid information for all 5 store positions

The surface Mach and pressure fill plot for the store at carriage position are shown in
Figure 5.a and 5.b, respectively. The pressure data on the wing surface is extracted at four
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chord-wise sections, two inboard and two outboard locations as shown in Figure 6.a for
comparing with experimental data. This sectional pressure data on the wing are compared
with the experimental data and with the solution obtained using HiFUN in Figure 7.
Though the sectional data obtained using CFD (both LSFD-U and HiFUN) show a good
comparison with the experiments at pre-shock locations, the post-shock comparisons show
larger deviations. This is possibly because of ignoring the shock-boundary layer effects
in inviscid simulations. From an independent study involving RANS simulations using
HiFUN we do have limited evidence to this effect. The axial pressure distribution on
the store along the generators at different angular positions as depicted in Figure 6.b are
compared with experimental and HiFUN data in Figure 8. The store pressure distribution
obtained using the meshless solver shows an excellent comparison with the experimental
data.

a. Mach Fill b. Pressure Fill

Figure 5: Store at carriage position: Mach = 0.95; AoA = 0 deg.
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Section.l

Section.3

Section.8
275deg

185 deg

a. wing sectional locations b. store angular locations

Figure 6: Sectional locations for Cp extraction

With this surface pressure comparison of store at carriage position, the integrated force
and moment coefficients are compared with experimental data and with HiFUN results
for all five predefined positions. The sectional view of the Cartesian grid and the pressure
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Figure 7: Wing sectional pressure coefficients for store at carriage position (M = 0.95, o = Odeg.)

contours are shown in Figure 9 for all predefined experimental store positions. The ax-
ial, side and normal force coefficients from LSFD-U and HiFUN are plotted against the
experimental predictions over a time range. The comparisons made in Figure 11.a show
a good agreement with experimental data. Similar comparisons made for roll, pitch and
yaw moment coefficients are shown in Figure 11.b.
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Figure 9: Sectional Cartesian grid and pressure contours for predefined store positions
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After this successful validation, the LSFD-U Euler solver is coupled with a 6-DOF simu-
lator for the complete store trajectory prediction. The process diagram of the automation
cycle is shown in Figure 12. The store inertial characteristics are tabulated in Table 3.
The constant ejector forces are applied on the store immediately after its release and are
tabulated in Table 4. As described in automation cycle, the trajectory is computed using
quasi-static approach using steady LSFD-U Euler solver. The simulations are carried
out at a pressure altitude of 26000ft for a freestream Mach number of 0.95 and a wing
incidence of 0 degrees. The surface pressure fill for few positions of the store are shown in
Figure 13. The linear displacements and linear velocities of the store are the most critical
parameters for ascertaining the safety of separation and deciding store envelope. The
computed results of store linear displacements and relative linear velocities are compared
with the experimental and HiFUN results and are shown in Figure 14.a and 14.b, re-
spectively. The LSFD-U results are in excellent agreement with the experimental results.
In Figure 14.c and 14.d, the store angular displacements and angular rates are compared
with experimental and HiFUN results. The LSFD-U results are in good agreement with
experimental results although there is a deviation in pitch angle and pitch rate beyond
0.3s. The axial, side and normal force coefficients are plotted with experiments and with
HiFUN in Figure 15.a, and are in reasonable comparison with experimental predictions.
Similarly, the roll, pitch and yaw moment coefficients compared in Figure 15.b. show
reasonable comparison with experimental data, with yawing moment showing significant
deviation from experiments beyond 0.3s. The LSFD-U results are similar to the results
produced by HiFUN and other inviscid simulations [17, 18].
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Figure 12: Process diagram of the automation cycle
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Store mass

Center of gravity

Roll inertia

Pitch inertia

Yaw inertia

Other inertial properties

Roll damping coefficient

Pitch damping coefficient
Yaw damping coefficient

m=907.18 kg

C'G=1.416 m aft of store nose
IXX:2712 k:gm2

[Yy:4881 kgm2

[ZZ:4881 kgm2
[XY:IXZ:[YZZO-O k;gm2
-4.0/rad

-40.0/rad

-40.0/rad

Table 3: Store characteristics

Forward ejector force
Forward ejector location
Aft ejector force

Aft ejector location
Ejector stroke length

10675.7 N, constant

1.24 m aft of store nose

42702.9 N, constant

1.75 m aft of store nose

0.10 m, approx. 0.054 sec after the store release

Table 4: Ejector characteristics

14
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Figure 13: Pressure fill on the store surface at various time instants after its release
(0.00sec, 0.20sec, 0.40sec, 0.60sec, 0.75sec and 0.89sec)
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Figure 14: Linear and angular motions of the store after its release(My = 0.95, a = 0deg.)
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Figure 15: Force and moment coefficients of the store after its release(Ms = 0.95, o = Odeg.)

Conclusions:

In this work, we have established an automated CFD process using the meshless LSFD-U
solver along with an in-house Cartesian mesh generator. The numerical demonstrations
presented clearly establish the utility of the meshless solver in the industrial applications
requiring repeated geometry modification and grid (point) generation. The LSFD-U re-
sults for both flap deployment study and store trajectory prediction compare very well
with the established finite voume based CFD tools, thus establishing the accuracy of the
meshless solvers. The current efforts are towards understanding the differences presented
by the CFD tools as compared to the experiments for the store separation study.
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