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Abstract. Peridynamic is a new formulation of solid mechanics based on integro-differential 

equations, hence it can deal with discontinuous problems conveniently. When used in 

boundary-related problems, the theory has some problems comes from a reduction in material 

stiffness raised by incomplete neighbors of a point nearby the boundary. In this paper, a 

correction method of resultant force density is made to ensure that the resultant force density 

is independent of horizons. Based on this independence, a “ghost neighborhood” method is 

proposed to handle the boundary effect. Finally, the theoretical verification and numerical 

verification are accomplished to indicate that this method is reasonable and effective. 
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1 INTRODUCTION 

The discontinuous of physical field is very hard to deal with by continuum mechanics, since 

the continuum mechanics relies on partial differential equations. The reason of this problem is 

that continuum mechanics assumes the interaction in materials only happens between two 

“neighboring” particles [2], so the government equations of mechanical behavior are some 

partial differential equations.   

Sometimes, some kind of ill-conditioned continuum mechanical method is proposed to model 

the discontinuous phenomena. For instance, for simulating the crack propagation behavior, 

traditional method need some special techniques that have been developed in the field of 

fracture mechanics. For example, FEM requires remeshing after each incremental crack 

growth. Although those newly improved method such as cohesive zone element [1]and 

extended FEM [2], eliminates the need of remeshing, they still rely on the external kinetic 

relations for injection of such elements while predicting crack growth [5].   

In 1998, Silling [3] advanced a new method, Peridynamic, which could overcome the 

shortcoming of the previous continuum methods, he introduced a model of long-range force 

between material points over finite distances in a body, and then the partial differential 

equations can be replaced with the integro-differential equations. This creative modification 

makes Peridynamic can deal with the continuous media, the discontinuous defects (such as 

crack) and particles in a single theoretical frame work without additional techniques. Many 

researchers used it to deal with the discontinuous and made some improvement of this 

method. Erkan Oterkus studied damage in metallic and composite structures [4][5] . Silling and 

his companion used this theory to study damage of composite and concrete structures [6][7][8] . 

The states based peridynamic was proposed by Silling in 2007, this model makes a large 

improvement of peridynamic. For example, the limitation of poisson ratio is removed [10]. YU 
[11]  made an improvement of a new adaptive integration method which brings an error 

reduction. 

However, peridynamic has some theoretical problems and computational techniques which 

need to do further investigation. Especially, the boundary effect discovered by Oterkus [5] is a 

problem when we need do some simulations related to the surface or boundary. The cause of 

this boundary effect is that the neighborhood for these boundary effect is incomplete, while 

resultant force density is calculated with an integration on a complete neighborhood [9]. The 

boundary effect will lead to a reduction in material stiffness near the boundary [5]. 

In this paper, our work will focus on the handling of peridynamic boundary effect with a 

“ghost neighborhood” method. Firstly, we will expound the boundary effect and its causes. 

Then a correction of bond force density is made which makes the resultant force density 

independence of horizons. Finally, the ghost neighborhood method is advanced and verified 

in both theoretical and numerical. 

2 PERIDYNAMIC BOUNDARY EFFECT 

By introducing the “long-range” force concept, the motion differential equation of a body 

can be converted to an integro-differential equation as equation (1). In fact, peridynamic 

theory can be thought as a continuum version of molecular dynamics [9].  
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(1) 

Where
x  is a neighborhood of x , U the displacement vector field, b a prescribed body 

force density field,  mass density in the reference configuration, and f a pairwise force 

function whose value is the force vector(per unit volume squared ) that particle x exerts on 

the particle x .  

The materials points in Peridynamic body have two types. For the points far away from the 

boundary, their neighborhood distribution is symmetrical, all the bond forces are balanced 

under a uniform deformation; for the points nearby the boundary, their neighborhood 

distribution is unsymmetrical, so the bond forces are not balanced anymore. The second one is 

obviously unreasonable and nonphysical. 

This problem can be expounded by a simple model. In this model, we applied a pure 

tension load on a bar with a length of 3dx, and discretized the bar into four particles for 

simplicity and intuitive. Then we choose a horizon of 2dx , as shown in Figure 1(a). In this 

model, the neighborhood of 
1x  and 

2x  are not complete, which will cause a reduction in 

material stiffness near the boundary. So the deformation under a pure tension load will not be 

uniform, shown in Figure 1 (b).  

  
(a) (b) 

Figure 1: Pure Tension of a Four Particles Bar 

It should be noted that this boundary influence the whole body, not only those areas nearby 

boundaries. This will be shown in the next section. 

 

3 METHOD TO HANDLE THE BOUNDARY EFFECT 

We will propose a “ghost neighborhood” method to handle the boundary. But before we 

doing this, a correction method of bond force density calculate should be derived. Because the 

“ghost neighborhood” method is based on an independence between resultant bond force 

density and horizons size, while the independence doesn’t exist in available resultant bond 

force density calculate method.  

To illustrate this point, we calculated a resultant force density of a deformed bar with a 

prototype microelastic brittle (PMB) material model [9]. This model defined the bond force to 

depend only on the stretch of this bond. The relation between bond force and bond stretch can 

be found in [5]. 
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Where F  -resultant force density  

0x  -location of a point in 1D problem  

  -a history dependent scalar valued function that takes on values of either 1or 0 to judge 

whether a bond is failure 

  -horizon size 

  -the relative position of two points defined by x x    in 1D problem 

A  -bar’s section area 

c  -a material constant related to elasticity modulus 

s  -bond stretch between two point defined by 
| | | |

| |
s

  



 
  

 Where ( , ) ( , )u x t u x t    means the relative displacement. And ( )u x,t  is the 

displacement of point x  at time t  . 

It should be noted that in 1D problem the location of a point, the relative position of two 

points, the displacement of a point and the relative position of two points can be treated as a 

scalar. 

From the eq.(3), we know that the result of the resultant bond density contains an 

integration of the bond stretch on the whole neighborhood. Which makes the resultant bond 

force density depends on the horizon size. 

3.1 The correction method of bond force density calculate  

An infinitesimal segment of deformation bar with a length of l is considered in this section 

(Figure 2 (a)). The strain of the segment is assumed to be linearly distributed (Figure 2 (b)). 

The PMB model is adopted in the following analysis. 

In classical continuum mechanics, the resultant force density (Figure 2(c)) at the central 

point can be given by  

/ ( )F A dx Adx E
x x
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   

(4) 

Where 
x




 is a constant in this segment because of the linearity of strain variation.  

In Peridynamic, the displacement, the stretch (Figure 2(d)) and the resultant force density 

can be given by 
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Where cos  is used to expression the direction of the force, and cos takes on values of 

either 1 or 0 in 1D problem 

Let
2

l
   . The eq.(7) can be replaced by 

1
( )
2

F cA
x


 


  

  
(8) 

Combination the result from Peridynamic eq.(9) with that from classic theory eq.(6) leads 

to the “spring constant” in the PMB model. 

2

2E
c

A


 

(9) 

The “spring constant” can be used in any non-uniform deformation, and the resultant force 

density is independent of the horizon size since only the displacement of adjacent particles is 

used to calculate the resultant force density on one material point. 

 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 2: the assumption of the strain distribution in an infinitesimal segment 

3.2 ghost neighborhood method 

We consider a homogeneity deformation bar with uniform section (shown in Figure 3). 

Some interpolating points were placed on the bar. This points will be used to calculate related 

variables (such as the bond stretch, the displacement). A point ix  which is nearby the 

boundary is taken to be studied in this section. We choose two different horizon size 1 and 

2  for this point. This two different size makes the point have two different neighborhood, 

shown in green and in dark blue in the picture. We used the stretch between the point ix  and 

its adjacent points 1ix and 1ix , which is named as 1,i is   and 1,i is  , to calculate the stretch in the 
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whole neighborhood with an interpolation algorithm. It should be noted that only the stretch 

between 
ix and its adjacent points

1ix , 
1ix  are used (stretch between

ix and
2ix  is ignored) to 

ensure the validity of this method since we used an assumption of linearly variation. Besides, 

the neighborhood of 
ix is incomplete under the horizon size of

2  , because this size is larger 

than the distance between point 
ix  and the boundary. We create a ghost neighborhood (shown 

in Cambridge blue) to complete its neighborhood. The stretch between points in the ghost part 

and describe is obtained with an extrapolation algorithm. 

In addition, we used the relative location   as a variable to describe the variation function 

of stretch. And, the function is not defined when 0   , 0,is  in this figure mean the stretch 

between the
ix and its infinitely near point. 

 
Figure 3: A point with different neighborhoods 

The stretch variation function and 0,is is defined by 

0 1 1 1 1( ) | ( ) / (| |)i i i i is s s s x x         
 

(10) 
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 (11) 

The resultant force density is calculated with an integration of all bond force between ix

and all material points in the neighborhood. 

The resultant force density under this two different horizon sizes are calculated in the 

following equations. 
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The resultant force density of 
ix got from eq.(12) is considered to be right, because this 

equation is calculated under a horizon sizes of
1  . And the neighborhood of 

ix is complete 

under this horizon size.  

Besides, the result of resultant force density is same under this two different horizon size.  

Considering this two facts mentioned in the last two paragraph, we can make a conclusion 

that the boundary effect can be handled with the “ghost neighborhood” method.  

In addition, the bond force density on end points is calculated in the classic theory with the 

assumption that the stretch is constant between an end particle and its adjacent particle. 

Shown as in Fig.4 

 

 
Figure 4: force calculate for points at the end of a bar. 

In this figure, boundaryl is a characteristic length of the end particle. It will influence the 

volume of this particle and the extern force density on it. The bond force density and extern 

force density is given by; 

 
boundary boundary

E A EsA
F

Al Al


   (14) 

extern

boundary

T
F

Al
  (15) 

Where   -location of a point in 1D problem  

T  - extern force effects on the end particle. 

3.3 Theoretical Verification 

The verification will be done in both static tense of a section bar and free oscillation of it. 

Firstly, a static model is construct to We start at a pure static tense of a uniform section bar, 

shown in Figure 5. 

The length of the Undeformed bar is 0L , and it will be 1L  after deformation. Let the 

elasticity modulus of the bar is E, and the section is A. Using the equilibrium equation for 

point 0x (17) and ix (18), we can get the displacement of the bar (19). 
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Where 
externF is the extern force density. 

 

Figure 5: Stress state of a bar 

This new method gives a same result with the classic theory under a static pure tension. Then 

a free oscillation model (as shown in Figure 6) is built to verify the dynamic behavior of this 

new method.  

 

Figure 6: Free Oscillation Of A Bar 

Using the equilibrium equation for point
ip  , and forcing the distance dx between each 

adjacent particles to approach zero 

1 1
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2 2
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i i
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When 0dx  , 

1 1
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
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(20) 

Where   is the mass density of the bar. And E is the elasticity modulus of the bar. 

The kinematic equation can be obtained from equation (20)  
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2 2
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(21) 

Which is same to the result in classic theory as well. 

This two verification state that this new method can give a correct solution in both static and 

dynamic problems  

3.4 Numerical Verification 

The numerical is based on the tension of a bar shown in Figure 7. A uniform tension force
2100 / /f m m  is applied on the same bar. The length L  of the bar is set to be 0.9m, and the 

elasticity modulus is 100pa. One end point is fixed. 

 

Figure 7: Deformation of a bar with different horizons 

The calculation was carried out with all parameters held constant, but for different discrete 

particles, the deformation is given under five discrete particle numbers

10,20,30,40 100nx and . The displacement of all points of the bar is shown in Figure 8. 

Generally, the “ghost neighborhood” method gives a good result of the displacement, and the 

displacement curve gets closer to the theory displacement curve. We then used a displacement 

of the end point as a measurement of errors. This errors and displacements under different 

discrete particles, as well as the theory is shown in Figure 9. As shown in this figure, the error 

declines significantly when the particle number increase and is tending to stability when the 

particle number are large enough. In addition, the error becomes less than 1% when the 

number reaches 100. 

With the result above, we can make a conclusion that the “ghost neighborhood” method is 

an effective way to handle the boundary effect. 
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Figure 8: Deformation of a bar under different discrete particles 

 

Figure 9: End Point Displacement And The Error Variation 

4 DISCUSSION AND CONCLUSION  

A correct method of bond force density calculation is advanced in this paper which is 

independent of horizons. So this correct method can deal with arbitrarily deformation. 

The ghost neighborhood, based on the independence of horizons, is proposed later. The 

theoretical verification and numerical verification indicated that this method gives a very 

good result of 1D problems, with a significantly declined error when particle number 

increases.  
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Furthermore, this ghost neighborhood, designed for handling boundary effect, can deal 

with those interface problems with a little transform.  

ACKNOWLEDGEMENTS 

This work is financially supported by the National Program on Key Basic Research Project 

(973 Program, No. 2013CB632505), National High-tech R&D Program of China (863 

Program, No. 2012AA051104), International Science & Technology Cooperation Program of 

China (No. 2011DFB60150), and the Fundamental Research Funds for the Central 

Universities (WUT: 2013-Ia-033 and 2013-Ia-029) 

REFERENCES 

[1] Zhang, P. etc. numerical simulation of cohesive fracture by the virtual-internal-bond 

model.  Computer Method in Applied Mechanics and Engineering. 3(2002) 263-277. 

[2] Li. Etc. Element-free galerkin method for dynamic fracture. Computer Method in Applied 

Mechanics and Engineering. 187(2000) 385-399. 

[3] S.A. Silling. Reformulation of Elasticity theory for discontinuities and long-range forces. 

Journal of the mechanics and Physics of solids 48(2000) 175-209. 

[4] Erkan Oterkus, Erdogan Madenci. Combined finite element and peridynamic analyses for 

predicting failure in a stiffened composite curved panel with a central slot. Composite 

Structure 94(2012) 893-850. 

[5] Erkan Oterkus, peridynamic theory for modeling three- dimensional damage growth in 

metallic and composite structure. PhD Thesis, University of Arizona. 2010 

[6] Walter Gerstle, Nicolas Sau, Stewart Silling. Peridynamic modeling of plain and 

reinforced concrete structures. 18th International Conference on Structural Mechanics in 

Reactor Technology. 

[7] Walter Gerstle, Nicolas Sau, Stewart Silling. Peridynamic modeling of concrete structures. 

Nuclear Engineering and Design. 237(2007) 1250-1258. 

[8] Jifeng Xu, Abe Askari, Olaf Weckner, Stewart Silling. Peridynamic Analysis of impact 

Damage in Composite laminates. J. Aerosp. Eng. 21(2008) 187-194. 

[9] S.A Silling and E. Askari, A meshfree method based on the peridynamic model of solid 

mechanics. Computers and structure. 83, 1526-1535, 2005. 

[10] S.A.Silling, etc. Peridynamic States and Constitutive Modeling. J Elasticity 88(2007) 

151-184. 

[11] K YU. A New Adaptive Integration Method for the Peridynamic Theory. Modelling 

Simul. Mater. Sci. Eng.19(2011) 045003 (24pp) 


