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Abstract. In this research, a technique of XFEM which can analyze two-dimensional Laplace 
equation with slit type boundaries of arbitrary inclination angle is proposed. In this technique, 
a complex velocity potential in potential flow theory is used to represent the behaviour of 
potential around the slit. Namely, the real part of a complex power function is used as an 
enrich function. Distribution of potential obtained from a numerical example is verified by 
being decomposed into the classical finite element part and the enriched component part.   
 
1 INTRODUCTION 

XFEM is a numerical technique to model internal boundaries such as cracks, holes, 
interface of biomaterials, etc., without making the FEM mesh to conform to the geometries of 
structures[1-6]. The numerical framework is based on the concept of partition of unity[7]. The 
main characteristics added to the approximation of XFEM are discontinuity across the crack 
segment and singularity near the crack tip. The former is realized by the Heaviside step 
function and the latter is realized by the asymptotic crack-tip displacement field. 

This technique has been mainly applied to the crack growth analysis of the structural 
member. For example, Sukumar et al. analyzed three dimensional fatigue crack 
propagation[8]. They also modeled holes and inclusions by level sets function[9]. Nagashima 
et al. applied the XFEM to the two-dimensional elastostatic bi-material interface cracks[10]. 
Elguedj proposed to use Hutchinson-Rice-Rosengren (HRR) fields to represent the 
singularities in elastic-plastic fracture mechanics[11]. As for fluid or fluid-structure 
interaction analysis, Sawada et al. applied XFEM to Navie-Stokes fluid analysis[12]. 
Gerstenberger and Wall presented XFEM using Lagrange multiplier based approach for fluid-
structure interaction[13].  

On the other hand, there are not so many studies of XFEM applied to the problems 



S. Nakasumi and T. Suzuki 

 2

described as Laplace equations, such as irrotational flow of ideal fluids, electrical or magnetic 
potential problem, heat conduction, etc.. In this paper, therefore, we present a methodology of 
XFEM to solve two-dimensional Laplace equation with slit type boundaries. The basic 
approach is to utilize the complex velocity potential in potential flow theory.  

2 FORMULATION 

2.1 Governing equation 

Consider the domain   bounded by  . The boundary   is composed of the sets 1  and 2  
as shown in Figure 1. We solve the equation of two-dimensional Laplace equation of potential 
  with boundary conditions as Eq.(1). 
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Where   is the prescribed potential of Dirichlet condition boundary, and nt  is the prescribed 
flux of Neumann condition boundary. Notation  T

X X Y      is a differential operator 
with respect to the basis vectors of the global coordinate system. Notation N  is the outward 
directional derivative operator. Scalar   is the permeability. As we consider the slit is flux-
free, the slit boundary is included in 2 . 
 

 
Figure 1: Domain with slit boundary 

2.2 Flow around a corner of semi-infinite line 

Flux, namely the gradient of potential  , is compared to the flow of ideal fluid. Near the 
slit, flux does not penetrate the slit but proceed along the slit, and turn around the slit tip. To 
make XFEM framework without generating mesh conforming to the slit, we have to find a 
function which represents such characteristics, and use it as an enrich function. In this section, 
we will introduce this function. In two-dimensional Laplace equation, a complex velocity 
potential can be used as suitable function which represents the flux distribution around the slit. 

Let consider a regular function  f z . A Complex number z x iy  ( ,x y R  , i  is 
imaginary unit）is mapped to a complex number i     ( , R   ) by  f z  (Fig.2). In this 
case,   and   can be regarded as functions of both x  and y . Namely, 
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(2b)

In the potential flow theory, this real value function  and   are called a potential function 
and a stream function, respectively. They satisfy well-known Cauchy-Riemann relationship. 
Moreover, the equipotential line and streamline is orthogonal with each other. 
 

 
Figure 2: Mapping between z-plane and  -plane 

 
Now, using positive real constant value U  and n , we let  f z  to be a power function of z  

as follows: 

  nf z Uz    (3)

Using the representation of poler form as iz re   and  De Moivre's theorem, we obtain Eq.(4). 
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Then,  and   are represented as follows: 
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(5b)

Where 2 2r x y   is radius, and   ( 0 2   ) is argment. This type of mapping is called 
conformal mapping, and the angle between any two lines is kept through this mapping. Thus, 
the orthogonality of equipotential line and streamline is kept, and this means that the flow on 
the z -plane is mapped to that on the  -plane by this mapping. By the mapping using,  f z  
in Eq.(3), a steady flow on the  -plane is mapped to the flow around a corner of a wedge of 
angle n  on the z -plane.  

Now, let 1U   and 1/ 2n   for Eq.(4), then we obtain a function e  as Eq.(6) 

     , , cos 2e ex y r r      (6)

This function  e x  is regarded as a potential of two-dimensional flow around a corner of 
semi-infinite line which extends from origin to positive direction of x-axis on the z -plane. We 
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can use this function in order to represent the potential around the slit boundary. Figure 3(a) 
shows the distribution of e . As can be seen, e is discontinuous on the slit  0,  0y x  . 

The flux velocity  T

x yv vv is obtained by differentiating e based on the chain rule of 
polar coordinate system as shown in Eq.(7) 
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(7a)

(7b)

Figure 3(b) shows the distribution of e  and its gradient vector in a domain of 1 , 1x y   . 
The direction of flux vectors is counterclockwise. Moreover, magnitude of the velocity 
approaches asymptotically to infinite at the corner of the semi-infinite line. 
 

(a) Potential e  (b) Potential (contour) and flux (vector) 

  Figure 3: Distribution of  cos 2e r   

2.3 Approximation of potential based on the framework of XFEM 

In this section, we introduce the approximation of potential   in Eq.(1) based on the 
framework of XFEM. We use quadrilateral finite elements to discretize the field (Figure 4). 
The basic concept is to use e  noted in previous section as an enrichment function to 
represent the analytical distribution around a slit. Namely, 

      , , ,n eX Y x y    N φ u  (8)

Where, N in Eq. (8) is a matrix, which is consisted of standard finite element shape functions 

iN ( 1,2,3,4i  ) for the iso-parametric quadrilateral finite elements as shown in Eq. (9). The 
coodinate  ,  is the normalized coordinate which corresponds to  ,X Y , when the element 
domain e is mapped from physical coordinate system  ,X Y  to the normalized coordinate of 

1 , 1    . 
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And, nφ and u are the discretized vector of n  and U , respectively. Namely, nφ is the 
existing nodal degrees of freedom of FEM, whereas u  is that of XFEM. 

 1 2 3 4
Tn    φ  

(10)

 1 2 3 4
T

u u u uu  (11)

In general, the slit is inclined against the global coordinate system. Since e  in Eq.(8) is 

defined on the coordinate system whose origin locates on the tip of the slit and the x-axis is 
along the slit, we have to make another coordinate system. Note that the einrich function e  

should be represented on this local coordinate system. 
 

 
Figure 4: Configuration of slit and evaluation point 

 

2.4 Discretized equilibrium equation 

We obtain the gradient  , namely X , by Eq. (12), 
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Where C  is the matrix which relates the gradient of   and the nodal degree of freedom ( nφ  
and u ), and denoted by Eq. (13). 
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Where X N  in Eq.(13) is obtained as Eq.(14), and the Jacobi matrix J  of iso-parametric 
mapping is obtained as Eq.(15). 
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Where  T
       N N N   in Eqs.(14) and (15) is obtained explicitly from Eq.(9), and the 

nodal coordinate vectors eX and eY  are represented as Eq. (16) 
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Since e  is defined on the local coordinate system, we obtain e
X  in Eq.(13) by Eq.(18). 

e e
X x   L  (18)

Where L  in Eq.(18) is a coordinate transform matrix which transforms arbitrary vectors from 
the local coordinate system oxy  into the total coordinate system OXY , and L  is discribed as 
Eq. (19). 

cos sin

sin cos

 
 

 
  
 

L  (19)

Moreover,  Te e e
x x y         is denoted in Eq.(7). 

After some manupulation, using the weighted residual method, we obtain the discretized 
equiriburium equations as follows: 
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(21a,b,c)

Where,  means the sum of elements and/or element boundaries. The element stiffness 
matrix eK is specifically calculated in Eq.(22) 
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As the integrant in Eq.(22) is discontiuous on the slit line, it is desirable to sub-devide 
elements on the slit into some triangles, and integrate them separately, as well as the way for 
XFEM enriched with Heaviside function. However, this process needs complicated geometric 
handling. Thus, in our reserch, we used higher order approximation for standard gauss 
integral scheme as shown in Eq.(23). We used parameter 4n   for the elements which 
include enriched nodes.  
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3 NUMERICAL EXAMPLE 

In this chapter, we demonstrate a simple example. Figure 5 shows the analysis model. The 
square domain is discretized into 1818 orthogonal grid type finite elements. Potential is 
prescribed on the boundary parallel to the X-axis. On the boundary parallel to the Y-axis, flux 
is prescribed to zero as Neumann boundary condition. Slit boundary is included in this 
Neumann boundary condition, and it is not represented on the mesh. The inclination angle of 
the slit is 30 degree to the X-axis. 

 

 
Figure 5: Analysis model  

 
Figure 6 shows the configuration of the enriched nodes.  Elements with yellow color have  

more than one enriched node, and these elements are numerically integrated using 4 4  

points for calculation of element stiffness matrix eK  in Eq.(23). In the case of XFEM using 
Heaviside step function as enrichment function, only elements including the slit 
(discontinuous segment) have the enriched node. Excessive nodal enrichment leads to ill-
conditioned stiffness matrix. In our case study using the enrich function in Eq.(6), however, 
suitable solutions were obtained even if the enriched nodes were distributed over the larger 
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domain. This leads to the flexibility of algorithm searching enriched nodes. 
 

 
Figure 6: Configuration of enriched node and element with enriched nodes 

 
We will verify the obtained solution. Figure 7 shows the distribution of potential  . This 

value plotted on each integral point calculated in Eq.(17). Next, the solution   is decomposed. 
Figure 8 shows the distribution of nNφ . This value corresponds to the classical finite element 
component of  . We can see that this value is distributed continuously. On the other hand, 
the potential derived from enrichment, namely eN u  shown in Figure 9, represents the 
discontinuity around the slit. 

Figure 10 shows the distribution of enriched nodal degree Nu . The magnitude of this value 
becomes large as it approaches the slit boundary. Since the flux is counterclockwise around 
the slit, this value is positive. In the case of clockwise, this value takes negative value. 

Figure 11 shows the distribution of flux vector (gradient of potential). As the original value 
is obtained on each integral point, they are interpolated so as to evaluate on the center of each 
element. 

4 CONCLUSIONS 

- A technique of XFEM framework for two-dimensional Laplace equation with slit 
boundaries is proposed. Real part of the power function of complex number which 
shows the flow around a corner of a semi-infinite plate in potential flow theory is 
used as enrichment function. 
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(a) Overview (b) Bird's eye view 
Figure 7: Distributino of potential (Total component) 

 

(a) Overview (b) Bird's eye view 
Figure 8: Distributino of potential (Nomal component) 

 

(a) Overview (b) Bird's eye view 
Figure 9: Distributino of potential (Enriched component) 
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Figure 10: Magnitude of enriched nodal degree 

 

 
Figure 11:  Flux vector 
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