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Abstract. A new strategy for the efficient solution of highly nonlinear structural prob-
lems is proposed in this paper, based on the combined use of Domain Decomposition
(DD) and Proper Orthogonal Decomposition (POD) techniques. The formulation here
presented is tailored for applications in elasto-plastic structural dynamics. In this context
the POD is applied to linear domains and a double strategy to update the reduced basis
is adopted. Examples show that a meaningful computational gain of approximately 50%
with respect to a monolithic solution can be obtained.

1 INTRODUCTION

Design and reliability assessment of structures like the moving parts of Micro Electro
Mechanical Systems (MEMS) are based on realistic simulations of complex multi-physics
(e.g. electro–mechanical, thermo–mechanical, magneto–mechanical) and/or highly non-
linear and irreversible processes (e.g. elasto-plasticity, damage, fracture), that must be
modeled with sufficient accuracy. This kind of coupled and non-linear problems lead to
numerical models featuring a large number of degrees of freedom, which are prohibitive to
solve within a time window compatible with the design workflow if standard finite element
strategies are adopted. These applications therefore call for approximation techniques that
replace large-scale computational models with simpler ones, still capable of catching the
essential features but entailing a (hopefully small) fraction of the initial computational
costs.

Recently, we proposed the coupled use of Domain Decomposition (DD, [1]) and Proper
Orthogonal Decomposition (POD, [2]) based model order reduction techniques, to reduce
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the computational burden of the simulations and at the same time efficiently exploit the
possibilities offered by large scale computing.

Applications to the electro-mechanical coupled problem for microsystems can be found
in [3, 4, 5]. Specifically, in [5] we presented an enhancement of the DD strategy coupled
to the model order reduction proposed in [4]: an ad-hoc way to impose the continuity
between the de-coupled domains, and some strategies governed by POD to efficiently
handle the mechanical problem were investigated.

Here, a further advancement of the methodology offered in [4, 5] is proposed. The
strategy, which falls within the realm of model order reduction techniques for highly non-
linear structural problems governed by, e.g. plasticity and fracture (see e.g. [6]), exploits
the potentialities of the coupled use of DD and POD methods.

To match the structural behavior even beyond the onset of non-linearities, the reduced
order model is adapted in two different ways:

• During the training part of the simulation, the reduced space is updated as soon as
a new snapshot is collected;

• During the reduced order analysis, an on-line adaptation of the reduced space is
performed through a behavior check.

The POD technique is then adopted only for the elastic parts of the mechanical domain;
the solutions relevant to the dynamics of the full non-linear and of the reduced linear re-
gions are advanced in time simultaneously, and glued together through interface relations.

To provide details about the procedure outlined here above, the remainder of the paper
is organized as follows. The proposed DD method is formulated in Section 2. Section 3 is
instead devoted to the description of the POD methodology, and how it is coupled with
the DD strategy (DD-POD). Numerical results concerning the elastic-plastic analysis of
a structural frame are discussed in Section 4. Final remarks are eventually gathered in
Section 5.

2 DOMAIN DECOMPOSITION STRATEGY WITH ELASTIC INTER-
FACES

We consider a domain Ω with prescribed displacements on ∂uΩ and prescribed tractions
on ∂fΩ. Studying the dynamics of Ω, the finite element discretization of the continuous
structural problem at the generic instant tn+1 leads to the following system of equations:

MÜ + Fint(U) = Fext (1)

where: M is the symmetric, positive-definite mass matrix; Ü is the nodal aceleration
vector, and U is the nodal displacement one; Fint is the vector of internal forces, and Fext

is the vector of external loads. The initial conditions (U(t = 0) = U0, U̇(t = 0) = U̇0)
and the boundary conditions on ∂uΩ complete the formulation of the problem.
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According to the standard methodology proposed in [1] for structural dynamics, ex-
tended to electro-mechanical problems in [3, 4], the kinematical fields of the problem are
split into two contributions, respectively called free and link, according to:

U = Ufree + Ulink (2a)

Ü = Üfree + Ülink (2b)

Following this approach, the mechanical problem (1) is decomposed into three stages:
the unconstrained problem, denoted as free; the interface problem; and the constrained
problem, denoted as link. At time tn+1, in case of two sub-domains (s = 1, 2) only and
under the assumption of linear-elastic homogeneous behavior of Ω (i.e. Fint(U) = KU,
where K is the stiffness matrix), such decomposition reads:

free MsÜ
free
s + KsU

free
s = Fext

s (3a)

interface Λ −→ Anelint
el=1

[
HelΛel = Kel

(
C2U

free
2 −C1U

free
1

)
el

]
(3b)

link MsÜ
link
s + KsU

link
s = CT

s Λ (3c)

Here: A represents the assemblage operator; Cs, s = 1, 2, is a Boolean matrix, which links
the degrees of freedom of the whole sub-domain to those belonging to the geometrical
interface of the sub-domain. Λel (el = 1, · · · , nelint

) is a vector of Lagrange multipliers
for the el -th interface element, representing the tractions acting upon the interface itself,
which has to be considered in the local equilibrium of each sub-domain, in order to restore
the compatibility. Kel is the stiffness matrix of the el-th interface element, which reads:

Kel =

∫
Γelint

NT
elκNel dΓ (4)

where: Nel is the matrix of shape functions, which model the displacement jumps across
the interface elements; κ is the local elastic stiffness linking tractions τ to displacement
jumps [U] across the interface, through τ = κ [U].

Through a Newmark time stepping technique, featuring parameters β and γ, the in-
terface operator Hel in the Eq. (3b) results to be:

Hel = I + β∆t2Kel

[
C1M

−1
1 CT

1 + C2M
−1
2 CT

2

]
el

(5)

In the above approach, the hypothesis of a perfect interface between the sub-domains
[1] has been therefore substituted by a linear elastic responses of the interface. While this
assumption may lead to (controllable) numerical instabilities in the solution, it appears
necessary in view of the reduced order modeling technique to be discussed next.
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3 PROPER ORTHOGHONAL DECOMPOSITION AND COUPLING WITH
THE DD METHOD

In this section we briefly review the coupled use of POD and DD; readers are referred
to [2, 4, 7] for all the details concerning POD.

According to the snapshot version of POD [2], the model-specific solution subspace is
obtained for each sub-domain by monitoring the time evolution of the displacement vector
Us. Hence, for accuracy reasons POD forces to consider the linear (stiff) response at the
interface between the mechanical sub-domains, as stated in Eq. (4). We then write:

Us =
Ns∑
i=1

αisΞis ≈
rs∑
i=1

αisΞisr = AsrΞsr (6)

where: Ns is the dimension of vector Us; rs � Ns is the reduced order of the sought sub-
domain model; matrix Asr = [α1s α2s · · · αrs ] collects the first rs orthonormal vector
columns of the matrix Asr , also called proper orthogonal modes (POMs), and vector Ξsr

gather the relevant combination coefficients. Assuming to have virtually set rs (which
does not need to be necessarily the same in all the sub-domains), we need to define the
basis αis to guarantee the attainment of the required overall discrepancy between full and
reduced representations of the mechanical system.

POD, in its snapshot version, requires an initial training stage of the analysis; during
this phase, snapshots Uis = Us(ti), i = 1, · · · , nsnap, i.e. responses of the system to the
actual excitation, are collected into the matrix Ss ∈ RNs×nsnap , according to:

Ss = [U1s U2s · · · Unsnaps
] (7)

After the training stage, the snaphots matrix Ss is factorized via a Singular Value
Decomposition (SVD) procedure, to give:

Ss = LsΛsR
T
s (8)

where: Ls ∈ RNs×nsnap and Rs ∈ Rnsnap×Ns are orthogonal matrices, that respectively
gather the left and right singular vectors; Λs ∈ Rnsnap×Ns is a pseudo-diagonal matrix,
whose pivotal entries Λiis are the relevant singular values. By placing terms Λiis in
descending order, a method to sort the POMs collected in Ls is obtained, see [2].

Exploiting the SVD update [5, 8], we are also able to update both POMs and singular
values as soon as a new snapshot is collected without setting a priori the duration tsnap of
the training stage. A rank-1 update of the SVD is needed, to move from Ss = LsΛsR

T
s

to Ss + abT = L̂s Λ̂sR̂
T
s , where: L̂s, Λ̂s and R̂s are the updated singular value matrices

of the s-th sub-domain; vector a contains the snapshot update; b is a binary vector,
which states e.g. that the last column of Ss is modified by the newly available snapshot.
Additional computational details can be found in [8].

In this paper, the POD technique is coupled with the DD one to solve the structural
mechanical problems. The convergence of the updating procedure in the s-th sub-domain
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is assumed to be attained when the estimates of the number of POMs to be retained in
the reduced order model, and of the relevant oriented energy content are not increased
by the new snapshot collected at time tsnap+1, that is:

rtsnap+1s
= rtsnaps

(9a)(∑rtsnap+1s
i=1 Λ2

iis∑Ns

i=1 Λ2
iis

)
tsnap+1s

≤

(∑rtsnaps
i=1 Λ2

iis∑Ns

i=1 Λ2
iis

)
tsnaps

(9b)

Once the order reduction matrix Asr is built, the dynamics of the elastic sub-domain
is projected onto the obtained sub-space spanned by the POMs of the sub-domain itself.
Within a Galerkin frame, we finally arrive at the following version of the semi-discretized
local equilibrium equations in the s-th sub-domain:

MsrΞ̈sr + KsrΞsr = Fext
sr + Λr (10)

where: Ξ̈sr and Ξsr are the reduced model acceleration and displacement vectors; Msr =
AT

srMsAsr and Ksr = AT
srKsAsr are the reduced mass and stiffness matrices of the

sub-domain, respectively; Fext
sr = AT

srF
ext
s is the reduced vector of external loads; and

Λr = AT
srC

T
s Λ is the reduced vector of Lagrange multipliers.

According to the DD method with elastic interface law presented in Section (2), we can
split the reduced kinematical solutions of each sub-domain into two terms, respectively
denoted as reduced free and reduced link. The high order problems are thus projected
onto the reduced space spanned by POMs gathered in the matrix Asr .

During the reduced order analysis, an on-line adaptation technique of the whole re-
duced model is performed, through a behavior check in each sub-domain. In those sub-
domains of the structure where the non-linear phenomena are incepted the POD reduced
analysis is stopped, and, through a zoom-in strategy, the non-linear modeling is performed.

Property Symbol Value Units

Young’s modulus E 2100 GPa

Mass density ρ 7800 kg/m3

Poisson’s ratio ν 0.3 −
Interface stiffness κii 1012 N/m3

Yield stress σy 200 MPa

Table 1: Mechanical properties of the steel.

4 NUMERICAL EXAMPLE: A STRUCTURAL FRAME

We consider the two-dimensional structural frame shown in Fig. (1), as a simple model
of a single-story steel building. The frame comprises two columns of height 6 m and width
0.25 m, anchored to the foundations and to an horizontal beam of span 5.5 m and width 0.5
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Figure 1: Structural frame: (a) system geometry, space discretization and domain decomposition in (b)
three, and (c) six sub-domains.

m, through moment-resisting connections, so as they can carry bending forces. Resistance
to lateral and vertical actions is provided by the rigidity of the connections and by the
bending stiffness of the members.

degrees of freedom elements

Monolithic 3282 2805

DD (3sd) 852 1614 852 685 1435 685

DD (6sd) 464 406 824 826 406 464 367 318 716 719 318 367

Table 2: Number of degrees of freedom and elements corresponding to each sub-domain subdivision

The mechanical properties of the steel are listed in Tab. 1: a non-linear elastic-perfectly
plastic constitutive model, with yield stress equal to 200 MPa, is considered. Fig. 1 shows
the adopted finite element mesh of constant strain triangles; plane strain conditions are
assumed to hold.

The structure is either divided into three or six sub-domains. Tab. 2 gives the number
of degrees of freedom and elements corresponding to each sub-domain division.

In POD simulations we have adopted k ≥ 0.999 (see [4]) in each sub-domain, to ensure
high accuracy of the solutions. When the standard SVD has been used in the training
stage, 300 snapshots were collected in each sub-domain.

Tot time Error w.r.t. M Gain w.r.t. M

Monolithic (M) 51074 −− −−
POD (tsnap = 0.1) 30887 2.56 · 10−3 −39.5

DD(3sd)-POD (tsnap = 0.1) 29400 1.02 · 10−2 −42.4

DD(6sd)-POD (tsnap = 0.1) 28908 1.2 · 10−2 −43.3

Table 3: Run times (ttot = 0.5 s).
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Figure 2: Horizontal displacement of node A: comparison between the reference monolithic solution and
outcomes of the proposed methodology.

Focusing on node A of Fig. 1 where a time-varying load P is applied, the time evolution
of its horizontal displacement is reported in Fig. 2, as obtained with the non-linear
monolithic code and with the proposed procedure at varying sub-domain division. A
noteworthy good agreement among all the responses can be observed.

number of POMs

POD (tsnap = 0.1) 5

DD(3sd)-POD (tsnap = 0.1) 5 3 5

DD(6sd)-POD (tsnap = 0.1) 10 6 5 6 6 11

Table 4: Number of POMs retained in the reduced order models.

All the reduced simulations considered in this example start by adopting the POD
technique in all the sub-domains. During the reduced order analysis, a behavior check is
implemented to control if the linear elastic hypothesis in each sub-domain keeps valid. The
response of each elastic sub-domain is integrated in time through the Newmark average
acceleration scheme (γ = 1/2 and β = 1/4), whereas the response of the sub-domains
switched to plastic modeling is integrated in time through an explicit Newmark average
acceleration scheme (γ = 1/2 and β = 0).

These results show the capability of the method to handle the material non-linearities.
Exploiting the DD-POD algorithm, we have been able to reduce the number of non-
linear time steps, attaining a computational gain of up to 43%, with a marginal effect
in comparison with the monolithic POD case (see Tab. 3). This happens even if the
total number of POMs in the DD-POD simulations is slightly higher than in the case not
featuring the subdivision of the frame, see Tab. 4.

To finally check the accuracy of DD-POD methodology in providing the space evolution
of the von Mises stress and of the equivalent plastic strain, results of the simulations are
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Figure 3: Von Mises stress and equivalent plastic strain on the deformed configuration (with an amplifi-
cation factor equal to 5): comparison between the reference monolithic solution and the outcomes of the
proposed methodology.

compared in Fig. 3 in terms of amplitude of the aforementioned fields at t = 0.36 s;
a similar comparison can be obviously obtained for any other time instant. The good
agreement among all the simulations is to be noted here.

5 CONCLUSION

In this paper, an advancement is offered with respect to what proposed in [4, 5], so
as to handle in reduced order analyses diffused or localized nonlinearities in mechanical
domains due to, e.g. plasticity. The proposed technique has been framed within the
general DD-POD approach, which allows the simulation of multi-physics and/or highly
non-linear coupled problems.

A critical discussion of the algorithm performances has been provided for an example
concerning the elastic-plastic, dynamic response of a structural frame subject to time-
varying loading. The coupled use of POD and DD has allowed to attain a computational
gain of up to about 50%, without affecting much the accuracy of the results.
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