STUDY ON PATHOGENIC MECHANISM OF IDIOPATHIC SCOLIOSIS

Han SUN1 and Hideyuki AZEGAMI2

1 Graduate School of Information Science
Nagoya University
A4-2(780) Furo-cho, Chikusa-ku, Nagoya, Japan 464-8601
e-mail: sun.han@a.mbox.nagoya-u.ac.jp

2 Graduate School of Information Science
Nagoya University
A4-2(780) Furo-cho, Chikusa-ku, Nagoya, Japan 464-8601
e-mail: azegami@is.nagoya-u.ac.jp

Key words: Biomechanics, Finite Element Method, Buckling, Idiopathic Scoliosis, Growth.

Abstract. This paper presents results of the finite-element analysis on linear buckling phenomena to investigate the etiology of idiopathic scoliosis. In the previous study, we assumed that idiopathic scoliosis is a buckling phenomenon induced by the growth of vertebral bodies, and demonstrated the results of the linear buckling analysis by the finite-element method using a spine model. However, in case using a program based on the nonlinear buckling theory, clear buckling modes similar to the clinical modes could not be obtained. In this study, returning to the starting point, we confirmed the existence of the buckling phenomenon using rather simple models. From the results of the linear buckling analysis, we confirmed the existence of the buckling phenomena, and made clear the region of geometrical parameters in which the buckling occur.

1 INTRODUCTION

The cause of idiopathic scoliosis is still unknown. The features of idiopathic scoliosis comprise spinal irregularity with lateral curvatures together with rotation without any marked abnormality of the vertebrae or associated musculoskeletal condition. Since almost all cases of the disorder appear during adolescence, particularity during growth spurts, growth has been recognized as a key factor for pathogenesis of idiopathic scoliosis.

With respect to the pathogenesis of idiopathic scoliosis, a large number of hypotheses and physical models have been presented. From the point of view in mechanics, we can classify these concepts into two types: that growth itself is asymmetrical; or that
buckling is induced by symmetrical growth of the vertebral bodies, which we call the buckling hypothesis [1–3].

For the buckling hypothesis, Dickson et al. [4] presented an important observation on flattening of the thoracic spine during growth spurt. They identified the trigger of rotational instability as median plane asymmetry, which means flattening or reversal of normal thoracic kyphosis at the apex of the curvature, and declared this instability as a buckling phenomenon.

Based on Dickson’s hypothesis, the authors analyzed the buckling phenomenon induced by the growth of vertebral bodies using finite-element models of spine by the linear buckling theory. Using a commercial program (MSC.Nastran 7.0), we obtained the fourth and sixth buckling modes which are similar to the clinical single and double-major curves, respectively [3]. Figure 1 (a) shows the result of the fourth buckling mode induced by the growth of vertebral bodies from T4 to T10.

However, in case using a program based on the nonlinear buckling theory, clear buckling modes similar to the clinical modes could not be obtained [5]. After this investigation, we reanalyzed the linear buckling modes using another commercial program. Then, we found that there is a program by which any buckling phenomena is not obtained.

From the dependency of programs, we had the doubt whether the buckling phenomenon exists or not. In the present paper, returning to the starting point, we confirmed the existence of the buckling phenomenon using rather simple models, and made clear the region in which the phenomena occur.

Figure 1: The fourth buckling mode and a radiograph of a 11-year-old female [2]
2 METHOD

To confirm the existence of the buckling phenomenon, we use three column models as shown in Figure 2. All of the models have the same height \(h = 500 \text{ [mm]} \) and depth \(d = 50 \text{ [mm]} \) considering the sizes of human spine. Front width \(w_F \), back width \(w_B \) and depth of growth domain \(g \) are chosen as variables. We use 8 [MPa] and 0.3 as Young’s modulus and Poisson’s ratio, respectively. Those values are determined such that the side bending deformations of the finite element models have the same order with the experimental result by Lucas et al. [6]. The second-order tetra elements of the number about 6,500 are used for each model.

We assume that only the bottom plane corresponding to the sacrum is fixed as the base position of deformation. The growth of the vertebral bodies is modeled by the thermal expansion in thermal elastic problem, which is shown as the red part for models in Figure 2. The value of 0.1 is used as the growth rate, which has unit of volume strain [-]. A finite element solver RADIOSS 11.0 (Altair Engineering, Inc.) is used to solve the thermal elastic problem and the linear buckling problem based on the result of the thermal elastic problem.

3 RESULTS OF ANALYSIS

Figure 3 shows the results of the existence maps of the buckling modes in \(w_F - w_B \) space for Model 1 to Model 3, respectively, when \(g = 10 \text{ [mm]} \). The numbers in circles mean the number of buckling modes more than 10, where 20 means the limit number we set. The numbers in triangles imply the number of buckling modes at the range from 1 to 10. The cross means no buckling phenomenon with this parameters of \((w_F, w_B)\).

From those results, \((w_F, w_B) = (16, 16) \text{ [mm]}^2\) can be considered as the parameters in order that the buckling modes occur stably. Figure 4 shows the buckling mode shapes for Model 1 at \((w_F, w_B) = (16, 16) \text{ [mm]}^2\). The buckling factors of the first modes for Model
1 to Model 3 at \((w_F, w_B) = (16, 16)\) [mm]² are 41.0, 41.7 and 42.6, respectively. Figure 5 shows the dependency of depth \(g\) on buckling factors for Model 1 and Model 2 when \(g = 10\) [mm].

4 DISCUSSION

From the results of Figure 3, it is confirmed that there are boundaries between the domain in which bucklings occur and the domain in which any buckling does not occur. Moreover, that the area of the domain in which bucklings occur for Model 1 is larger than that for Model 2 supports Dickson’s hypothesis, namely flattening increases possibility falling into a buckling phenomenon. That the area in which bucklings occur for Model 3 is larger than that for Mode 1 means that the structure of spine which has caves in the rear part of vertebrae makes buckling phenomenon easier to cause.

From the result of Figure 5, when the growth depth \(g\) is around 10 [mm], the buckling phenomena are most easily occur for the all models. Since the front part of the vertebra...
Figure 4: Buckling mode shapes for Model 1 at \((w_F, w_B) = (16, 16)\) [mm]\(^2\) when \(g = 10\) [mm].

Figure 5: Dependency of depth \(g\) of growth domain on buckling factors for Model 1 and Model 2 at \((w_F, w_B) = (16, 16)\) [mm]\(^2\).

corresponds to the vertebral body, it is considered that the growth of the vertebral bodies has possibility to causes buckling phenomena. In addition, the gravity by the mass of body generates the compression stress in the front parts of the vertebral bodies. It is considered that the compression stress causes the growth [7].
5 CONCLUSION

This paper investigated buckling phenomena of the simplified spine models induced by the growth of vertebral bodies using finite-element method. Based on the results, we confirmed the existence of the buckling phenomena, and made clear the region of geometrical parameters in which the buckling occur. These results support the hypothesis of Dickson. Analyses using spine model considering geometrical nonlinearity remain for future work.

REFERENCES

