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Abstract. A novel approach to the simulation with the boundary element method using
trimmed NURBS patches is presented. The advantage of this approach is its efficiency and
easy implementation. The analysis with trimmed NURBS is achieved by double mapping.
The variation of the unknowns on the boundary is specified in a local coordinate system
and is completely independent of the description of the geometry. The method is tested
on a branched tunnel and the results compared with those obtained from a conventional
analysis. The conclusion is that the proposed approach is superior in terms of number of
unknowns and effort required.

1 INTRODUCTION

The boundary element method (BEM) has offered an alternative to the finite element
method and has been attractive for certain types of problems, such as those involving an
infinite or semi-inifinite domain [5].

The isogeometric approach [7] has led to renewed interest in the method since it only
requires a surface discretization and a direct link can be established with geometric mod-
eling technology, without the need to generate a mesh. Using NURBS instead of the
traditional Serendipity or Lagrange functions for describing the variation of boundary
values, additional benefits are gained because of their higher continuity and efficient re-
finement strategies [3].

Trimmed NURBS patches have been successfully applied to problems where two solids
intersect. Such models can be created quickly in a CAD program and data exported
in IGES format. The exported IGES data contain the description of the boundary of
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objects via NURBS patches and trimming curves defined in the local coordinate system
of a patch. This information can then be used to trim the NURBS patch, i.e. to remove
part of the patch surface.

In this paper we present a simple but effective approach to the analysis of trimmed
surfaces. To the best of our knowledge the proposed method of double mapping has not
been previously published.

Furthermore we propose to generalize the isogeometric concept by approximating the
boundary values (tractions, displacements) with functions that are different from the ones
used to describe the geometry. Our motivation for this comes from the fact that the data
obtained from CAD programs describing the boundary, may not be suitable for describing
the boundary values.

2 GEOMETRY DEFINITION WITH TRIMMED NURBS PATCHES

2.1 NURBS patches

In CAD programs the geometry is described by NURBS patches which are mapped
from a unit square with coordinates u, v to the global coordinates x (x,y,z) by

x =
B∑
b=1

A∑
a=1

Rp,q
a,b(u, v)xa,b (1)

where xa,b are the coordinates of the control points, p and q are the function orders in
u and v direction, A and B are the number of control points in u and v direction and Rp,q

a,b

are tensor products of NURBS functions:

Rp,q
a,b =

Na,p(u)Nb,q(v)wa,b∑B
b̄=1

∑A
ā=1Nā,p(u)Nb̄,q(v)wā,b̄

(2)

Na,p(u) and Nb,q(v) are B-spline functions of local coordinates u or v of order p or q
(0 constant , 1 linear , 2 quadratic etc.) and wa,b are weights. The B-spline functions
are defined by a Knot vector with non-decreasing values of the local coordinate and a
recursive computation which starts at order 0.

For example for Na,p(u) with a Knot vector Ξu =
(
u1 u2 · · · uA+p+1

)
we have for

p = 0

Na,p(u) = 1 for ua 6 u < ua+1 (3)

Na,p(u) = 0 otherwise (4)

and for p=1,2,3· · ·

Na,p(u) =
u− up

ua+p − ua
·Na,p−1 +

ua+p+1 − u
ua+p+1 − ua+1

·Na+1,p−1 (5)

For a more detailed description of NURBS the reader is referred to [9].
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Figure 1: Quarter cylinder with control points and local u,v coordinate system

As an example we show in Figure 1 the geometrical representation of a quarter cylinder.

For this example the knot vectors in u,v direction are

Ξu =
(

0 0 0 1 1 1
)

(6)

Ξv =
(

0 0 1 1
)

(7)

and the weights are given by

w =

(
1 0.7 1
1 0.7 1

)
(8)

2.2 Analysis with trimmed NURBS patches

If there is an intersection of NURBS patches the CAD program provides trimming
information. The trimming information comprises one or more trimming curves, which
are B-splines and are defined in the local coordinate of the NURBS patch to be trimmed.
A method for performing an analysis on trimmed surfaces has already been presented
in [10] and involves finding the intersection of the trimming curve with the underlying
NURBS surface and a reconstruction of the knot spans and control points.

Here we present a novel approach that appears to be simpler to implement and more
efficient, since all it involves is a mapping. For explaining the proposed trimming method
we use a simple example and assume that the cylinder in Figure 1 is trimmed by 2
trimming curves obtained from the CAD program, marked I and II in Figure 2. Trimming
curve I is a B-spline of order p = 1 and has 2 control points and trimming curve II is
of order p = 3 and has 6 control points. The idea is to map the trimmed area from the
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Figure 2: Trimming of a quarter cylinder using the double mapping algorithm

u, v coordinate system to an ū ,v̄ coordinate system that represents a unit square. The
trimming curves map as straight lines along v̄ at ū = 0 and ū = 1 in this system.

The mapping from the ū ,v̄ to the u, v system is given by

u = N1(ū)uI(v̄) +N2(ū)uII(v̄) (9)

v = N1(ū)vI(v̄) +N2(ū)vII(v̄) (10)

where

N1(ū) = 1− ū (11)

N2(ū) = ū (12)

For trimming curve I we compute the points along ū = 0 as

uI(v̄) =
B∑
b=1

N I
b,p(v̄)ub,I (13)

vI(v̄) =
B∑
b=1

N I
b,p(v̄)vb,I (14)

where N I
b,p(v̄) are the B-spline functions defining the trimming curve and ub,I , vb,I are

the local coordinates of the control points.
For triming curve II we compute the points at ū = 1 as

uII(v̄) =
B∑
b=1

N II
b,p(v̄)ub,II (15)
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!

Figure 3: CAD model of tunnel branch and resulting 1/4 simulation model depicting NURBS patches
and control points

vII(v̄) =
B∑
b=1

N II
b,p(v̄)vb,II (16)

where N II
b,p(v̄) are the B-spline functions defining the trimming curve and ub,II , vb,II are

the local coordinates of the control points. This represents a linear interpolation between
the trimming curves. The evaluation of the integrals and the definition of the basis
functions is carried out in the ū,v̄ coordinate system and then mapped onto the u, v and
then the x, y, z coordinate system (the mapping involves two Jacobians). An extension of
the method to more than 2 trimming curves is possible. The proposed mapping however
would not work for the case where the trimming curve is a closed contour inside the u, v
domain. In this case the NURBS patch may be split into two or more patches.

2.3 Geometry definition

To explain the definition of the problem geometry we use the example of a branched
tunnel. Figure 3 depicts the CAD model of the tunnel with a branch at 90◦.

For the simulation, symmetry conditions were applied which meant that only 1/4 of
the problem needed to be considered. The geometry definition with 6 NURBS patches (2
of them trimmed) and 3 infinite plane strain NURBS patches [4] is shown on the right of
Figure 3. This geometry description is as accurate as the CAD description and needs no
further refinement.

3 SIMULATION

An ideal companion to CAD is the boundary element method, as both rely on a
description of the problem by surfaces. Therefore this method will be used for the simu-
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lation. In the following we only present a brief description of the method. Details of the
implementation of the isogeometric BEM can be found in [11] and [4].

3.1 Boundary Element Method

The boundary integral equation for an elastic continuum without body forces can be
written as:

c (P ) u (P ) =

∫
S

U (P,Q) t (Q) dS −
∫
S

T (P,Q) u (Q) dS (17)

The coefficient c (P ) is a free term related to the boundary geometry.
u (Q) and t (Q) are the displacements and tractions on the boundary and U (P,Q)

and T (P,Q) are matrices containing Kelvin’s fundamental solutions (Kernels) for the
displacements and tractions respectively. P is the source point and Q is the field point.

For the purpose of explaining the proposed simulation procedure we use the tunnel
problem where tractions due to excavation are known and the displacements are unknown.

The integral equation can be discretized by using an interpolation of the displacements:

u =
B∑
b=1

A∑
a=1

Rpd,qd
a,b (ū, v̄)de

a,b (18)

where de
a,b denote the parameters for u at points a, b. The subscript d of p and q

indicates that the functions differ form the ones used for the description of the geometry.
Therefore we use the terminology generalized IGA as in the classical IGA reported in the
literature the same functions are used.

To solve the discretized integral equation we use the Collocation method, that is we
satisfy it only at discrete points on the boundary Pn

The discretized integral equation can be written as:

c (Pn)
B∑
b=1

A∑
a=1

Rpd,qd
a,b (ū, v̄)dec

a,b =

∫
Se

U (Pn, Q) t dS

−
E∑

e=1

B∑
b=1

A∑
a=1

∫
Se

(T (Pn, Q) Rpd,qd
a,b (ū, v̄)dS)de

a,b

for n = 1, 2, 3...N

(19)

where ec denotes the patch that contains the collocation point and E is the number
of patches. The integrals over NURBS patches are computed using Gauss Quadrature.
In some cases the patches have to divided into integration regions. For the case where
the integrand tends to infinity inside a patch special procedures have to be applied. The
reader is referred to [4] for a detailed discussion on this topic.
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Figure 4: Plot showing numbering of patches and parameters for tunnel example

The collocation points Pn are first computed in the local coordinate system and then
transferred to the global coordinate system as explained previously. The local coordinate
of the collocation points can be computed using the method proposed by Greville [6]:

ū(Pi) =
ūi+1 + ūi+2 + · · ·+ ūi+pd

pd
i = 0, 1, . . . , I (20)

v̄(Pj) =
v̄j+1 + v̄j+2 + · · ·+ v̄j+qd

qd
j = 0, 1, . . . , J (21)

where i and j denote the local (patch) numbering of the collocation point and I and J
are the number of parameter points of the patch in ū and v̄ direction. ūn and v̄n denote
the corresponding entries in the Knot vector of the basis functions approximating the
unknown displacements.

Remark: The Greville formulae also compute collocation points at the edges of
NURBS patches. The coordinates of these points, computed in local coordinates of the
different connecting NURBS, have to be the same. For trimmed NURBS this would only
be the case if the parameter spaces of the trimming curves match. For the tunnel example
presented here this was the case, so the collocation points matched, but this may not be
guaranteed for a general application. However, this can be resolved by using discontiuous
collocation [8].

The final system of equations to be solved is

[T]{u} = {F} (22)

where [T] and {F} are assembled from patch contributions and {u} contains all dis-
placement values.
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Figure 5: Example of mapping a basis function onto patch 2

3.2 Solution and refinement strategies

Because the idea is to completely separate the description of the geometry from the
approximation of the unknown the unknown parameters are numbered independently.
The parameter numbering is shown for the tunnel example in Figure 4 for the coarsest
discretization. This is updated automatically by the program during the refinement pro-
cess. The variation of the unknown is defined in the local ū, v̄ coordinate system and then
mapped into the global coordinate system. For trimmed patches the procedure outlined
in 2.2 is used. Figure 5 shows this for patch 2 of the tunnel example and the first basis
function. We start the simulation with basis functions of order p = q = 2 and use the
different refinement strategies available in IGA. For the problem of the tunnel intersection
it was found that raising the order to p = q = 4 gave the best results (Figure 6)

4 Example

For testing the proposed algorithm we analyze the tunnel intersection with the following
properties

• Elastic domain with E= 1000 MPa, v= 0

• Virgin stress: σz = 1Mpa compression, all other components zero

• Symmetry about x-z and x-y planes

• Single stage excavation
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Figure 6: Refinement process: Basis functions on edges of NURBS patch 2: a) in global coordinate
system for p = q = 2, b) in local coordinate system for p = q = 2 and c) refinement to p = q = 4

For the case of a single stage excavation this is a pure Neumann problem and the
tractions are given as:

t = nσ (23)

where n is the outward normal and σ is the pseudo-vector of virgin stress.
Figure 7 shows the location of collocation points and the subdivision into integration

regions for the finest discretization (p = q = 4, 291 degrees of freedom). In the program,
subdivision lines are generated automatically through collocation points. In addition, the
user may define additional subdivision lines. Further subdivisions are automatically made
by the program for the case where the source point P is close to the integration region,
using a quad tree method (for details see [2])

Figure 8 shows one result of the analysis namely the deformed shape.
To check the accuracy, the results are compared with a conventional BEM analysis using

Serendipity functions for describing the geometry and the variation of the unknowns.
Figure 9 shows the mesh used for the analysis with the simulation program BEFE [1].

Two analyses were performed, one with linear and one with quadratic shape functions.
The latter had 2895 unknowns.

The z-displacement along the trimming curve is shown in Figure 10 for the conventional
BEM and the new approach.

9



G. Beer, B. Marussig, J. Zechner, Ch. Duenser and T-P Fries

Figure 7: Location of collocation points and subdivision into integration regions

Figure 8: Deformed shape

Figure 9: Mesh used for the conventional BEM analysis with isoparametric elements
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Figure 10: Variation of the vertical displacement along the trimming line, comparison of new method
(IGA) with isoparametric BEM (BEFE)

It can be seen that the conventional BEM results converge towards the results obtained
by the method presented here.

5 SUMMARY AND CONCLUSIONS

We have presented a novel approach to the simulation with the boundary element
method and trimmed NURBS patches. The innovations are in two parts. First, a pro-
cedure is presented for analyzing trimmed surfaces, which is much simpler to implement
and more efficient than published methods. Secondly, we propose that the approximation
of the unknown is completely independent from the definition of the boundary geometry.
Our motivation comes from the fact that the boundary geometry is described with the
same accuracy as the CAD model and needs no further refinement. Efficient refinement
strategies available for NURBS can then be applied to the description of the unknown
only.

Comparison of the results of the analysis of a branched tunnel with a conventional
isoparametric analysis shows good agreement. However, the number of degrees of freedom
required to achieve the same (if not better) result is an order of magnitude smaller. The
reason for this is that the approximation of the geometry is much more accurate and that
the functions describing the variation of the unknowns exhibit a much higher continuity.
In addition the need for the generation a mesh is completely avoided as data are taken
directly from the CAD program.

The algorithm for trimming still requires further testing on more complex cases and
may have some limitations. Future work will concentrate on the implementation of effi-
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cient procedures for non-linear analysis into the proposed framework and on methods of
reducing storage and run times for large simulations.
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