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Abstract. For the obstacle problem as the prototypical example for variational inequal-
ities, the “Other Look” by Braess [2] at Lagrange multipliers has lead to a paradigm with
reliable and partly efficient error control. Therein the efficiency is understood in terms
of the error u − v in H1

0 (Ω) for the exact solution u and an approximation v in H1
0 (Ω)

in the primal variable and the error λ − µ for the exact Lagrange multiplier λ and an
approximation µ in the dual space H−1(Ω). These error terms are compared with explicit
computable terms, as in the analysis for variational equalities. Reliability and efficiency
then leads to the equivalence

‖u− v‖+ ‖λ− µ‖∗ ≈ computable terms

possibly up to multiplicative generic constants.
This paper presents a reliable and efficient a posteriori error analysis for the conforming
finite element method (FEM) from [6]. The reliable error control is even a guaranteed
upper bound for the exact error. The paper answers the question of efficiency beyond the
aforementioned equivalence. Given the exact Lagrange multiplier λ for which choice of
an approximation µ of λ does it hold

‖λ− µ‖∗ . ‖u− v‖+ data oscillations?

It clarifies the role of the Lagrange multiplier and possible choices for suitable approxi-
mations. Furthermore reliability and efficiency is viewed as the equivalence

‖u− v‖ ≈ computable terms.

The results of the a posteriori analysis lead to an adaptive algorithm. The optimality for
a conforming adaptive FEM is shown by Carstensen und Hu [5].
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1 Introduction

Given a bounded Lipschitz domain Ω ⊂ Rd with polyhedral boundary ∂Ω the energy
(semi-)scalar product a : H1(Ω)×H1(Ω)→ R on the vector space H1(Ω) reads

a(u, v) :=

�
Ω

∇u · ∇vdx for all u, v ∈ H1(Ω).

It induces the energy norm |||·||| := a(·, ·)1/2 on the vector space

V := H1
0 (Ω).

Given f ∈ L2(Ω) define F ∈ V ∗ by

F (v) :=

�
Ω

fvdx for all v ∈ V.

The obstacle χ ∈ W 1,∞(Ω) and the Dirichlet boundary value uD ∈ W 1,∞(Ω) satisfy
χ ≤ uD a.e. along ΓD in order to ensure that the closed and convex subset

K := {v ∈ A | χ ≤ v a.e. in Ω} of A := uD + V ⊆ H1(Ω)

is non-empty. The weak formulation of the obstacle problem seeks u ∈ K with

F (v − u) ≤ a(u, v − u) for all v ∈ K. (1)

It is well known [9], that a unique weak solution u of (1) exists and u ∈ H2
loc(Ω) satisfies

the consistency conditions (where ⊥ abbreviates point wise orthogonality)

0 ≤ u− χ ⊥ λ := f + ∆u ≤ 0 a.e. in Ω. (2)

In case uD ∈ H3/2(∂Ω), χ ∈ H2(Ω) and Ω convex (or ∂Ω ∈ C1,1), the solution satisfies
u ∈ H2(Ω) [13, Corol 2.3, Chap. 5] and the Lagrange multiplier λ ∈ L2(Ω) belongs to
L2(Ω; (−∞, 0]) ⊆ V ∗.

Throughout this paper we assume no extra condition on the boundary of the polyhedral
Lipschitz domain, except that λ ∈ L2(Ω; (−∞, 0]).

The remaining part of this paper is organized as follows. Section 2 provides a general
error estimate and the efficiency of this error estimate. Section 3 designs a discrete
Lagrange multiplier µ for the conforming FEM and states the efficiency of this Lagrange
multiplier. Section 4 presents numerical experiments which demonstrate and empirically
confirm the theoretic results from the previous sections.
The rather technical results of Section 2 and 3 utilise the Medius analysis and will appear
elsewhere
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The paper applies standard notation for Lebesgue and Sobolev spaces and their norms
‖•‖L2(Ω), |||•||| := ‖∇•‖L2(Ω) (• indicates the possible arguments), as well as their local
variants ‖•‖L2(ω) and |||•|||ω. The operator norm is defined by

|||•|||∗ := sup
ϕ∈H1

0 (Ω)

�
Ω

•ϕdx/|||ϕ|||.

L2(Ω; (−∞, 0]) denotes the set of L2 functions with non-positive values. The notation
A . B abbreviates A ≤ CB for some generic constant C which may depend on the
interior angles of the triangulation, i.e., on some constant γ0, but not on the mesh-size, and
A ≈ B abbreviates A . B . A. Throughout the paper the notation (•)+ := max{•, 0}
is employed.

2 General Error Control for the Obstacle Problem

Given any v ∈ A and µ ∈ L2(Ω; (−∞, 0]) define some residual Res ∈ V ∗ by

Res(ϕ) := F (ϕ)−
�

Ω

µϕdx− a(v, ϕ) for all ϕ ∈ V. (3)

With S := {ϕ ∈ V | |||ϕ||| = 1} set |||Res|||∗ := sup{Res(ϕ)| ϕ ∈ S}.
Without further assumptions, the following general error estimate leads to a guaranteed

upper bound with respect to the approximations v of u and µ of λ.

Theorem 2.1. Suppose v ∈ A is some approximation to the exact continuous solution
u ∈ K ∩ H2

loc(Ω) of (1) with the obstacle χ ∈ W 1,∞(Ω) and the source term f ∈ L2(Ω).
Suppose µ ∈ L2(Ω; (−∞, 0]) is some non-positive approximation of the Lagrange multiplier
λ := f+∆u ∈ L2(Ω; (−∞, 0]) and v ∈ A an admissible approximation of the exact solution
u ∈ K. Then the error e := u− v and the gap w := min{0, v − χ} ∈ V satisfy

ja �
Ω

(λ− µ)(u−max{v, χ})dx+ |||e|||2/2 + |||e+ w|||2/2

= Res(e+ w) + |||w|||2/2;

jb 0 ≤
�

Ω

µ(χ− u)dx−
�

Ω

λ(v − χ)+dx

=

�
Ω

(λ− µ)(u−max{v, χ})dx−
�

Ω

µ(v − χ)+dx;

jc �
Ω

µ(χ− u)dx−
�

Ω

λ(v − χ)+dx+ |||e|||2/2 + (1− 1/t)|||e+ w|||2/2

≤ t|||Res|||2∗/2−
�

Ω

µ(v − χ)+dx+ |||w|||2/2 for all 0 < t <∞;

jd ∣∣∣|||λ− µ|||∗ − |||e|||∣∣∣ ≤ |||Res|||∗ ≤ |||e|||+ |||λ− µ|||∗.
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Recall the abbreviations e := u− v and w := min{0, v− χ} and define the error terms
by

Err :=

(�
Ω

µ(χ− u)dx

)1/2

+

(�
Ω

(−λ)(v − χ)+dx

)1/2

+ |||e|||+ |||e+ w|||+ |||λ− µ|||∗.

Note that the displayed integrands are non-negative (and so the square roots define reals)
and are seen as error terms for the consistency condition.

This error Err is controlled by the computable guaranteed upper bound

GUB := |||Res|||∗ +

(�
Ω

(−µ)(v − χ)+dx

)1/2

+ |||w|||.

The next theorem states the reliability and efficiency of GUB

Theorem 2.2 (reliability and efficiency). It holds

1/2GUB ≤ Err ≤ (30/7)1/2GUB.

3 Conforming FEM

This section applies the a posteriori error estimates from Section 2 to the conforming
Courant FEM (CFEM) as in [1, 2, 3, 4, 7, 10, 11, 12] with homogeneous Dirichlet boundary
conditions in two dimensions for simplicity.

3.1 Discretisation

Let the bounded polygonal Lipschitz domain Ω ⊆ R2 be partitioned in a shape-regular
triangulation T into triangles, with nodes N , interior nodes N (Ω), nodes on the boundary
N (∂Ω), and with edges E , interior edges E(Ω) := {E ∈ E|E * ∂Ω}, and edges along the
boundary E(∂Ω) := {E ∈ E| E ⊆ ∂Ω}. Given any node z ∈ N , let T (z) denote the
set of all triangles T with z ∈ N (T ) in the set N (T ) of the three vertices of a triangle
T , and let |T (z)| denote the number of triangles in T (z); ωz := ∪T (z) is the support
of the (P1 conforming) nodal basis function ϕz with interior ωz := {ϕz > 0}. The set
ΩT := ∪z∈N (T )ωz denotes a patch around each triangle T ∈ T .

The triangulation is shape regular in the sense that there exists a universal constant
γ0 > 0 such that any interior angle α satisfies γ0 ≤ α. To avoid unnecessary technicalities
with the operators J and J∗ in Section 3.2 and in the definition of Osc below, throughout
this paper each triangle in the triangulation has at least one vertex in the interior of the
domain.

For any k ∈ N0 define

Pk(T ) := {vk : T → R| vk is a polynomial of degree ≤ k},
Pk(T ) := {vk ∈ L∞(Ω)| ∀T ∈ T , vk|T ∈ Pk(T )}.
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For a given triangulation T , define the piecewise constant mesh size hT ∈ P0(T ) and the
L2 projection Π0 : L2(Ω) → Π0(T ) by hT |T := hT := diam(T ) and Π0|Tf :=

�
T
fdx :=�

T fdx/|T | for all T ∈ T . Furthermore define the oscillations

osc2(f, T ) := ‖hT (f − Π0f)‖2
L2(T ) and osc2(f, T ) :=

∑
T∈T

osc2(f, T ). (3.4)

Given a shape-regular triangulation, define the Courant finite element spaces by

VC(T ) := C0(Ω) ∩ P1(T ),

KC(T ) := {vC ∈ VC(T )| ∀z ∈ N (Ω), χ(z) ≤ vC(z)}.

Define the conforming interpolation operator IC : L2(Ω)→ VC for any v ∈ L2(Ω) by

IC(v) =
∑
z∈N

v(z)ϕz.

The nodal basis function ϕz satisfies ϕz ∈ VC(T ) and ϕz(y) = δz,y for y, z ∈ N . The
discrete solution uC ∈ KC(T ) solves the variational inequality

a(uC, vC − uC) ≤ F (vC − uC) for all vC ∈ KC(T ).

The discrete solution uC ∈ VC(T ) associates the discrete Lagrange multiplier σC := F −
a(uC, •) ∈ VC(T )∗ with the discrete consistency conditions

(uC(z)− ICχ(z))σC(ϕz) = 0 and σC(ϕz) ≤ 0 for all z ∈ N (Ω) (3.5)

(recall ϕz denotes the nodal basis function to the node z ∈ N (Ω)). However, at this point,
σC ∈ VC(T )∗ is neither an L2 function nor globally non-positive in general. To represent
σC by some non-positive function as in [2] the first idea may be the Riesz representation
λC of σC in the Hilbert space VC(T ) endowed with the L2 scalar product. Notice that
λC ∈ VC(T ) may not be non-positive in general and hence λC is not an immediate choice
for some µC which could represent µ in Section 2.

3.2 Two Quasi-interpolation Operators and one Discrete Lagrange Multiplier

For any ϕ ∈ H1(Ω) define Jϕ ∈ P1(T ) ∩ C(Ω) as in [1] by

Jϕ :=
∑
z∈N

(�
Ω

ϕϕzdx/

�
Ω

ϕzdx

)
ϕz. (3.6)

In order to approximate the boundary values of a discrete Lagrange multiplier µ correctly,
the above interpolation operator will be modified. For each node z ∈ N (∂Ω) select some
neighbouring free node ζ(z) in the sense that z and ζ(z) belong to the same interior edge
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of the triangulation T (since z belongs to some triangle T with at least one vertex in the
interior there is at least one interior edge conv{z, ζ(z)}). For all free nodes z ∈ N (Ω) set
ζ(z) := z,

ψz :=
∑

y∈ζ−1(z)

ϕy ∈ P1(T ) ∩ C(Ω), and Ωz := {ψz > 0}.

This is used to define the quasi interpolation operator

J∗ϕ :=
∑

z∈N (Ω)

(�
Ω

ϕψzdx/

�
Ω

ϕzdx

)
ϕz for any ϕ ∈ H1(Ω)

and the oscillations

Osc2(f,N (Ω)) :=
∑

z∈N (Ω)

diam(Ωz)
2

∥∥∥∥f −  
Ωz

fdx

∥∥∥∥2

L2(Ωz)

for any f ∈ L2(Ω).

With σC := F (•)− a(uC, •) as above define

λCB :=
∑

z∈N (Ω)

(
σC(ϕz)/

�
Ω

ϕzdx

)
ψz ∈ L2(Ω; (−∞, 0]). (3.7)

3.3 Reliable and Efficient Error Estimator for Fixed Lagrange Multiplier

This section applies the results of Section 2 to the conforming FEM and shows reliability
and efficiency for this method. Suppose uC is an arbitrary discrete function in KC and
recall the notation e := u − uC, w := min{0, uC − χ}. Given µ := λCB and v := uC, the
residual reads

ResC(ϕ) = F (ϕ)−
�

Ω

λCBϕdx− a(uC, ϕ) for all ϕ ∈ V. (3.8)

Let zC ∈ VC(T ) denote the Riesz representation of ResC|VC(T ) ∈ VC(T ) from (3.8) in the
Hilbert space (VC(T ), a), and define ErrC and GUBC by

ErrC :=

(�
Ω

λCB(χ− u)dx

)1/2

+

(
−
�

Ω

λ(uC − χ)+dx

)1/2

+ |||e|||+ |||e+ w|||+ |||λ− λCB|||∗;

GUBC :=

(
‖hT (f − λBC)‖2

L2(Ω) +
∑

E∈E(Ω)

hE ‖[∇(uC + zC) · νE]‖2
L2(E) + |||zC|||2

)1/2

+
(
−
�

Ω

λBC(uC − χ)+dx
)1/2

+ |||w|||/2.

With these error terms ErrC, the global upper bound GUBC provides a reliable and
efficient a posteriori error estimate for the conforming FEM.
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Theorem 3.1. The Courant FEM satisfies

ErrC . GUBC . ErrC + osc(f, T ).

3.4 Efficiency of the Discrete Lagrange Multiplier

This section is devoted to the efficiency of the discrete Lagrange multiplier λCB in the
terms |||λ − λCB|||∗ and

�
Ω

(−λCB)(uC − χ)dx. For convex obstacles, both terms can be
bounded by the error |||u − uC ||| plus additional data oscillation terms. The theorem
below employs the two subsets TC and TI of the triangulation T

TC := {T ∈ T | uC = χ on T}; (3.9)

TI := {T ∈ T | ∃yT , zT ∈ N (ΩT ), χ(yT ) < uC(yT ) and χ(zT ) = uC(zT )} (3.10)

which represent the triangles T ∈ TC with full contact and the intermediate triangles
T ∈ TI which lie in the discrete interface of triangles where at least one node is in contact
and one node is not. The estimates in this section depend strongly on the specific choice
of Lagrange multiplier.

Theorem 3.2 (Efficiency). Consider the exact discrete solution uC and the exact discrete
Lagrange multiplier λCB. Then it holds

ja |||λ− λCB|||∗ . |||u− uC|||+ Osc(λ,N (Ω)).

Provided χ ∈ P1(Ω) it also holds

jb �
Ω

(−λCB)(uC − χ)dx . |||u− uC|||2 + |||λ− λCB|||2∗ + osc(f, TI \ TC)2

. |||u− uC|||2 + Osc(f, TI \ TC) + Osc(λ,N (Ω)).

For globally affine obstacle χ ∈ P1(Ω) an immediate consequence of Theorems 3.1 and
3.2 is the following corollary. It states that reliability and efficiency do not only hold for
ErrC but also for |||u− uC|||.
Corollary 3.3. For the discrete solution uC ∈ VC(T ) and χ ∈ P1(Ω) with χ ≤ uC it holds

|||u− uC||| . GUBC . |||u− uC|||+ |||e+ w|||+ osc(f, T ) + osc(λ, T ). �

4 Numerical Experiments

This section is devoted to the performance of the global upper bound established in
Section 3. This bound is tested on adaptive and uniform meshes.
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E1 E1 E1

E2 E2 E2E3 E3 E3

Figure 1: Red-, blue-, and green-refinement of a triangle

4.1 Numerical Realisation

The outputs of the following algorithm are the values of the guaranteed upper error
bound GUBC as well as the respective efficiency indices GUBC/ErrC.

Algorithm The INPUT is an initial mesh T0, and a constant 0 < Θ < 1
LOOP ∀` = 0, 1, 2... until termination do

COMPUTE (with the Matlab routine quadprog) the discrete solutions to the conform-
ing finite element discretisation, uC, on the mesh T` with ndofC many unknowns.

ESTIMATE the error ErrC . GUBC.

MARK a minimal subsetM` ⊂ T` with respect to the refinement indicator ηC described
below, such that M` satisfies

Θ
∑
T∈T`

η(T )2 ≤
∑
T∈M`

η(T )2.

The respective refinement indicator reads

η2
C(T ) :=

((
‖hT (f − λBC)‖L2(Ω) +

∑
E∈E(Ω)

hE ‖[∇(uC + zC) · νE]‖L2(E)

+ |||zC|||2
)1/2

+
(
−
�

Ω

λBC(v − χ)+dx
)1/2

+ |||w|||/2
)2

.

REFINE the triangles inM` by red-refinement and perform red-green-blue-refinement
(see Figure 1) on further triangles to avoid hanging nodes.

4.2 L-shaped Domain

For vanishing obstacle and Dirichlet data uD ≡ χ ≡ 0 on the L-shaped domain Ω :=
(−2, 2)2\([0, 2]× [−2, 0]), the source term

f(r, ϕ) := −r2/3 sin(2ϕ/3)(7/3(∂g/∂r)(r)/r + (∂2g/∂r2)(r))−H(r − 5/4)

g(r) := max{0,min{1,−6s2 + 15s4 − 10s3 + 1}} for s := 2(r − 1/4)
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Figure 2: Values of exact error (left) and efficiency indices (right) for the conforming and non-conforming
FEM with respect to ndof from Subsection 4.2

with the Heaviside function H leads to the known exact solution

u(r, ϕ) = r2/3g(r) sin(2ϕ/3)

from [1] which has a typical corner singularity at the re-entrant corner. Figure 2 presents
the convergence rates of the exact error and the guaranteed global upper bound and the
efficiency indices of the global upper bounds for the conforming CFEM on adaptive and
uniform meshes. Figure 2 left shows that the global upper bound as well as the error
terms converge with the same convergence rate of −0.44 on uniform meshes and with
the optimal convergence rate of −0.5 on adaptive meshes. This observation leads to the
almost constant efficiency indices, both for the uniform and the adaptive algorithm, cf.
Figure 2 right, with values around 3.5.

4.3 Square Domain

This example from [10] considers the constant obstacle χ ≡ 0 on the square domain
Ω := (0, 1)2 with the source term

f(r, ϕ) :=

{
−16r2 + 3.92 for r > 0.7

−5.8408 + 3.92r2 for r ≤ 0.7

and the Dirichlet boundary conditions uD(r, ϕ) := r2 − 0.49. The exact solution reads

u(r, ϕ) = max{0, r2 − 0.49}2.

Figure 3 shows optimal convergence rates both for the error estimator and the exact error.
Undocumented experiments confirm that the overall error is dominated by the error terms
which concern the Lagrange multipliers.

The efficiency indices both for the adaptive and uniform mesh refinement lie between
3.8 and 4.
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Figure 3: Values of the Global Upper Bounds GUB, and the error terms Err (left) and efficiency indices
(right) for the conforming and non-conforming FEM with respect to ndof from Subsection 4.3
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Figure 4: Exact errors (left) and efficiency indices (right) for the conforming and non-conforming FEM
with respect to ndof from Subsection 4.4

4.4 Smooth Obstacle

The last example from [8] concerns the smooth obstacle χ(x, y) := −(x2 − 1)(y2 − 1)
on the square domain Ω := (0, 1)2, with f := ∆χ and the exact solution u = χ. Both
for the adaptive and the uniform algorithm, the error estimator and the exact error
demonstrate the optimal convergence rate of −0.5. Since Ω is convex an improvement of
the convergence rate by adaptive mesh refinement cannot be expected in this example.
As for the examples on the L-shaped domain (Subsection 4.2) and from Subsection 4.3,
the exact overall error in this case is dominated by the error terms which concern the
Lagrange multipliers. The efficiency indices lie at approximately 4.4.
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4.5 Conclusion

The numerical experiments confirm that the general approach presented in this paper
indeed leads to reliable and efficient error estimation for the conforming Courant finite
element method at hand. Further undocumented experiments show that the fairly large
overestimation of the Courant FEM is due to an error estimator employed to estimate
the error of an auxiliary Poisson model problem which arises in Theorem 3.1.
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