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Abstract. In this paper, a new iterative method, named residual iterative method, for solving 
sparse non-symmetrical systems of linear equations is proposed based on the Simultaneous 
Elimination and Back-Substitution Method (SEBSM), and the method is applied to solve 
systems resulted in solid mechanics problems solved using Finite Element Method (FEM). 
First, SEBSM is introduced for solving general linear systems using the direct method. And, 
then a double-iterations method for reducing the residual of the system of equations and 
modifying the value of the solution change is presented based on a Newton-Raphson iterative 
technique. In each system residual iteration, another inner iterative process is applied for 
modifying the solution change. Two numerical examples are given to demonstrate the 
behaviour of the proposed method. 

 
 
1 INTRODUCTION 

In science computation and engineering problems, people often need to solve linear 
systems of equations. In fact, in the most popular numerical methods, such as the finite 
element method (FEM) [1], boundary element method (BEM) [2], and the meshless method 
[3], the eventual task is to solve a system of equations. Choosing an efficient solver for a 
linear system is of significant importance both for improving computational efficiency and for 
saving storage requirements, especially for large-scale sparse equation systems. 

The methods of solving linear systems can be classified into two categories [4,5]: direct 
methods and iterative methods. The frequently used direct methods are Gaussian elimination 
and LU-factorization methods, and the iterative methods [6,7] are represented by the Jacobi 
method, Gauss-Seidel method, SOR algorithm, Conjugate gradients, and GMRES. The 
advantage of the direct method is that the solution of the system can be definitely obtained by 
executing a finite number of operations, and the disadvantage is that as the size of the system 
become large, both the computational efficiency and the accuracy become deteriorated. 
Comparing to the direction methods, the iterative methods have the advantage that large 
systems can be solved since it is based on matrix-vector product operations, and the 
disadvantage that if the iteration cannot be converged, the solution usually cannot be accepted. 
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However, once a convergent solution can be obtained, iterative methods are usually less 
expensive than direct methods in solving large systems of equations. It can be seen that 
convergence is a critical issue in iterative methods. 

In direct methods, a novel method for solving large sparse systems of linear equations was 
proposed recently by Gao and co-workers [8,9] based on a simultaneous elimination and 
back-substitution method (SEBSM). In the method, both elimination and back-substitution 
procedures are completed in a same row treatment, and, therefore, no final back-substitution 
procedure is required. SEBSM requires much less amount of storage and can also save the 
computational time by a few orders of magnitude comparing to the Gaussian elimination 
method. Nevertheless, when the system of equations is huge, the storage is still a big issue. In 
this case, the iterative method is a good alternative. 

In iterative methods, the Jacobi and Gauss-Seidel methods [10] require much less storage 
than other methods. This is because the Jacobi method only employs the diagonal terms of the 
coefficient matrix A in the system Ax=b as the iterative matrix and the Gauss-Seidel method 
utilizes the lower triangular matrix of A as the iterative matrix. Generally, the Gauss-Seidel 
method is more stable than the Jacobi method. The main disadvantage of these two methods is 
that the convergence is not guaranteed for some systems of equations. 

In view of the analysis of the advantages and disadvantages on the direct and iterative 
methods, this paper presents a new iterative method for solving all types of linear systems of 
equations: dense, sparse, unsymmetrical, and non-positive definite ones. In the method, the 
coefficient matrix A is split into lower and upper matrices. The lower matrix is served as the 
iterative matrix and the upper one is used to form the right-hand side of the solvable equation 
set. The feature of the proposed method is that the lower matrix has a certain bandwidth along 
the diagonal line. By making use of the band storing feature of SEBSM [8], the iterative 
convergence can be controlled by selecting a suitable bandwidth of the lower matrix. The 
proposed method overcomes the weaknesses of the Gauss-Seidel iterative method which can 
only use a lower triangular matrix of A as the iterative matrix, and breaks through the 
limitation of the Golub and Kahan’s method which reduce A to a lower bi-diagonal form [11], 
and solves the bottle neck problems of the Thomas method which only can solve the tri-
diagonal system of equations. Since the size of the working array needing to be stored in the 
iteration is as small as the upper bandwidth off the diagonal line of the lower matrix, large-
scale linear systems can be solved using the proposed method. 

2 SIMULTANEOUS ELIMINATION AND BACK-SUBSTITUTION METHOD 
(SEBSM) 
The systems of linear equations are usually expressed in the component or matrix form as:  

i

n

j
jij bxa =∑

=1
           or     bx =A       (1) 

Using SEBSM to solve the above system is through a row by row operation procedure 
[8,9] (this is why the method was called REBSM in [8,9]). It is assumed that, after the 
operation of the first k-1 rows, the first k-1 unknowns can be expressed in terms of the 
remaining unknowns as follows: 
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For the k-th row in equation (1), by eliminating the first k-1 unknowns using (2), the k-th 
unknown kx  can be expressed in terms of the remaining unknowns as follows 
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And substituting (3) back to (2), the expressions for the previous unknowns can be updated 
as : 
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Equations (6) and (3) are the results after the treatment of the k-th row. Comparing them 
to equation (2), it can be found that the number of unknowns on the right-hand sides is 
reduced by one. Equations (6) and (3) are then repeated for all remaining rows of equation (1) 
one by one, until k reaches the final row, i.e., k=n. Whenever the row treatment goes forward 
by one, the unknowns on the right-hand side is reduced by one. When all rows are finished for 
treatment, the solutions of the system are obtained, which are ( )n

ii bx = , i=1, …, n. 
It is noted that during treatment of each row, the coefficients ( )k

ija  need to be stored. 
However, the storage size for each row is changed and determined only by the non-zero 
elements after the diagonal line. Fig. 1 is a diagrammatic sketch of the storage spaces needed 
for a sparse matrix A, when k takes values from 1 to 10, in which the elements within the 
rectangles imply the storage spaces required for each k value. 
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Figure 1: Coefficient storage spaces for a sparse matrix A during each row treatment 

From Fig.1 it can be seen that, for a particular row, the required storage size for storing 
the coefficients involved in equation (7) depends on the position of the last non-zero element 
of the row under consideration. This gives us a chance to construct an iterative method to 
solve a huge system of equations. 

3 DOUBLE-ITERATIONS METHOD BASED ON SEBSM 
The first page must contain the Title, Author(s), Affiliation(s), Key words and the 

Summary. The Introduction must begin immediately below, following the format of this 
template. 

Although SEBSM requires less storage space than other solvers, data storing is still a big 
issue in solving huge system of equations. Besides, when a system closes to singular, the 
direct method described above may result in a large computational round-off error. In these 
cases, the iterative method is a good alternative [12, 13]. 

According to the storing feature of SEBSM that only the spaces from the diagonal element 
to the last non-zero element of the row are needed, a double-iterations method for system 
residuals and solution changes is developed in the following by making use of this feature. 

After n-th residual iteration, the solution of equation (1) is denoted by nx , and the residual 
of equation (1) is written as follows: 

nn AxbR −=  (9) 

At the (n+1)-th iteration, by modifying the solution, we enforce the residual to be zero, 
i.e. 01 =+nR . Thus, utilizing Tayloy’s series expansion, it can be obtained that: 

0)( 21 =∆+∆
∂
∂

+=+ xOxRRR
n

nn

x
 (10) 

where x∆  is the modification value of the solution, the solution change. 
Noticing that AxRn =∂∂ / , ignoring the high order terms in above equation, the 

following equation can be obtained for determining the solution change: 
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nRxA =∆  (11) 

Solving the above equation, we can obtain the modification value of the solution, x∆ . For 
a huge system of equations, it may be difficult to store the whole coefficient matrix A into the 
computer memory. To overcome this difficulty, we solve equation (11) through an iteration 
process by splitting A into a lower matrix LA  and an upper matrix UA  as follows 
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where the lower matrix LA  has a certain bandwidth off the diagonal line, and UA is the 
remaining part of A. As an example, following equations illustrate the coefficient splitting 
pattern for the case in which the lower matrix has the half bandwidth of 32/1 =bN . 
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After the coefficient matrix is split into two parts as shown in (12), the iterative 
formulation for solving the solution change can be written as 

)()1( IUnIL xARxA ∆−=∆ +  (15) 

where the superscript I denotes the I-th iteration for x∆ . 
For a certain residual nR obtained from equation (9) in the n-th residual iteration, equation 

(15) is used repeatedly, until the values of x∆  does not change any more. 
It is noted that using the SEBSM formulation to solve equation (15), the working space 

required for storing the coefficients of remaining unknowns is as large as the marked region in 
equation (13) rather than all non-zero elements in the lower matrix LA . The maximum 
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required working space is nN b ⋅2/1 . This indicates that the current iterative method needs a 
relatively small storage. 

To obtain a fast iterative scheme for the solution change, one can invert the lower matrix 
LA  in (15) and obtain a high efficient iterative scheme. However, the inverse matrix of LA  

may be a dense matrix. In this case, if the order of A is huge, the required storage space may 
be unallowable for a computer resource. Therefore, whether directly using equation (15) or 
using the inverse matrix of LA  to perform the iteration process for the modification value 

x∆ depends on how large the coefficient matrix is and the computer resource. 
Once the iteration for the solution change is converged using equation (15), the 

approximation values of unknowns are updated using the following expression: 

xxx nn ∆+=+ λ1  (16) 

where λ  is a relaxation factor which makes the norm of the residual of equation (1) minimum. 
To determineλ , substituting equation (16) into equation (1) and the updated residual of 

the system can be expressed as 

xARxAAxbAxbR nnnn ∆−=∆−−=−= ++ λλ11  (17) 

The norm of 1+nR  can be written as 

)()()( 11 xARxARRRS nTnnTn ∆−∆−== ++ λλ  (18) 

To make S minimum, let 

0=
∂
∂
λ
S

 (19) 

Thus, from above equation, it can be easily solved that 

)()(
)()(
xAxA

xAR
T

Tn

∆∆
∆

=λ  (20) 

After obtain the value of λ  using equation (20), the updated solution can be obtained 
using equation (16). Then, substituting 1+nx  into equation (9) results in the new residual of the 
system of equations. If the new residual is not small enough, a new residual iteration process 
is performed by using equations (9),(15),(20) and (16) again, until the norm of the residual is 
reduced to a specified value. In fact, when λ  is less than a very small value or becomes 
minus, the iteration is stopped. 

It can be seen that the iterative method described above is a double iterations scheme for 
the residual of the system and for the change of the solution, respectively. In the residual 
iteration, it has the advantage of the fast convergence in the Newton-Raphson method, and in 
the solution change iteration it has the advantage of requiring small storage as occurred in the 
Gauss-Seidel method [10]. If only one iteration is forced in the residual iteration, i.e. always 
keeping bRn = , then the current method becomes the general matrix iterative method. On the 
other hand, if only one iteration is carried out for the solution change, that is, the right-hand 
side of equation (15) is always taken as nR , then the current method reduced to a pure 
Newton-Raphson iterative method. 



X. W. Gao, J. X. Hu., J. Liu and M. Cui 

On inspection of equation (15), it can be seen that the iterative formulation in the solution 
change is similar to the Jacobi and Gauss-Seidel iterative algorithms [10]. The only difference 
is that in Jacobi method, the lower matrix LA  is the diagonal terms of A, and in the Gauss-
Seidel method, LA  is the lower triangular part of A. However, in the current method, the 
lower matrix LA  can be formed by selecting a suitable half bandwidth size of bN 2/1 . This can 
guarantee the iteration converged. It is noted that the bigger bN 2/1  is, the faster the 
convergence is, of course, the larger the storage space is required for containing the working 
coefficients of remaining unknowns.  

In practical implementation, the solution change iteration does not need to be completely 
converged. A suitable maximum number of iterations may be given for the solution change 
iteration and the final global convergence of the problem can be controlled by the residual 
iteration of the system of equations. Using this strategy, the global computational efficiency 
can be improved considerably. 

4 EXAMPLES 
To examine the performance of the proposed method, SEBSM, two examples are analyzed 

in this section.  
Example 4.1. The systems of equations are generated in such a way that 

)1/(1 +−= ijaij  
ib  is formed by setting 1=ix  (i=1, …, n). 

To make the coefficient matrix band sparse, when generated ija  is smaller than 0.001, it is set 
to zero. For the purpose of comparison, Gauss-Seidel iterative method is also adopted here to 
solve the generated equation sets. Table 1 lists the computational time and numbers of 
iterations for the equation order n=10000, in which Sebsm-200 means the results using 
SEBSM with the half bandwidth of 2002/1 =bN . Figs. 2 and 3 are the plots of the 
computational time and the number of iterations for different value of bN 2/1 , respectively. In 
iteration, the convergence tolerance is taken as 10-6. 

Table 1: Computational time using different bandwidth size 

Iterative 
Method 

Computational 
Time (s) 

Number of 
Residual Iteration 

Number of solution 
change iteration 

Gauss-Seidel 91 x 57 
Sebsm-20 77 7 1 
Sebsm-20 119 6 2 
Sebsm-20 129 5 3 
Sebsm-20 139 4 4 
Sebsm-20 138 3 6 
Sebsm-20 138 3 7 
Sebsm-800 211 3 1 
Sebsm-1000 86 1 1 
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Figure 2: CPU time for different size of half bandwidth 

 
Figure 3: Number of iterations for different size of half bandwidth 

From Table 1, it can be seen that the computational time varies with different size of the 
half bandwidth. The best performance occurs in the case of the number iteration for solution 
change being 1. 

Example 4.2 
In order to investigate the effectiveness of the presented method to solve the actual 

engineering problems, the second example is considered for steady heat transfer problem of a 
cube with the dimension of m1m1m1 ×× . The thermal conductivity is C)W/(m50 °⋅=k . The 
temperature on the top of the cube is C500 °=T , while the temperature on the bottom surface 
is C50 °=T , other surfaces are subject to the insulated Neumann condition 2mW/0=q . This 
problem is analyzed using the finite element method (FEM), in which the system of equations 
is solved using the proposed method in this paper. Two FEM models with different elements 
are used as shown in Figure 4. Table 2 shows the detailed information of the two sets of 
meshes. The computed temperature distribution on the cube is shown in Figure 4 (c). Tables 3 
and 4 list the computational time and numbers of iterations for the equation order is 6137 and 
16224, respectively.  
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(a)                                                      (b)                                                       (c) 

Figure 4: Two kinds of meshes and temperature distribution of the cube: 
                                           (a) mesh of 18*18*18,  (b) mesh of 25*25*25, and (c) contour plot 

Table 2: The detailed information of the two sets of meshes 

Meshes (a) (b) 
The order of the equations 6137 16224 
The number of non-zeros 59777 163524 

Sparse radio 0.0016 0.00062125 
 

Table 3: Computational time using different bandwidth size and number of iterations 

Iterative 
Method 

Computational 
Time  

Number of Residual 
Iteration 

Number of solution 
change iteration 

Gauss-Seidel 21m12s x 411 
   Sebsm-1 32s 237 1 
   Sebsm-1 30s 113 3 
   Sebsm-5 1m22s 240 1 
   Sebsm-5 1m18s 121 3 
   Sebsm-10 1m44s 241 1 
   Sebsm-10 1m37s 112 3 
   Sebsm-20 1m56s 169 1 
   Sebsm-20 2m15s 105 3 

Sebsm-50 3m3s 137 1 
Sebsm-50 4m6s 113 2 
Sebsm-50 3m44s 93 3 
Sebsm-50 3m43s 85 4 
Sebsm-50 3m54s 85 5 
Sebsm-50 3m51s 75 6 
Sebsm-50 3m48s 73 7 
Sebsm-100 5m48s 137 1 
Sebsm-100 7m12s 85 4 
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Sebsm-200 12m26s 137 1 
Sebsm-200 15m2s 93 3 
Sebsm-6137 9s 1 1 

 
 

Iterative 
Method 

Computational 
Time  

Number of Residual 
Iteration 

Number of solution 
change Iteration 

Gauss-Seidel 24h34m35s x 2300 
   Sebsm-1 5m58s 393 1 
   Sebsm-1 7m30s 308 2 
   Sebsm-1 8m10s 284 3 
   Sebsm-1 8m0s 253 4 
   Sebsm-5 19m26s 478 1 
   Sebsm-5 17m12s 218 3 
   Sebsm-10 23m22s 427 1 
   Sebsm-10 22m13s 218 3 

Sebsm-20 42m58s 361 1 
Sebsm-20 46m55s 188 5 
Sebsm-20 1h5m13s 150 20 
Sebsm-50 59m37s 246 1 
Sebsm-50 1h19m5s 119 5 
Sebsm-100 3h5m0s 232 1 
Sebsm-100 5h46m21s 152 5 
Sebsm-200 9h12m43s 231 1 
Sebsm-200 10h22m35s 124 3 
Sebsm-300 7h41m57s 231 1 
Sebsm-300 13h48m14s 138 5 

Sebsm-16224 16m4s 1 1 
 

5 CONCLUDING DISCUSSIONS 
A novel iterative method for solving large system of linear equations is presented based 

on the simultaneous elimination and back-substitution method (SEBSM). In the method, 
double iterative procedures are performed: one being for the residual of the system and the 
other being for modification value of the solution. The feature of the presented method is that 
the required storage space and the iterative convergent speed can be controlled by selecting a 
suitable half bandwidth of the lower matrix. A bigger size of the half bandwidth can 
accelerate the convergence speed, but the total computational time becomes longer. Therefore, 
it may be concluded that, under ensuring convergence, the less half bandwidth size can 
achieve a better computational efficiency. 
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