
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)
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Abstract. The Reduced Basis (RB) method is a well established method for the model
order reduction of problems formulated as parametrized partial differential equations. One
crucial requirement for the application of RB schemes is the availability of an a posteriori
error estimator to reliably estimate the error introduced by the reduction process. How-
ever, straightforward implementations of standard residual based estimators show poor
numerical stability, rendering them unusable if high accuracy is required. In this work we
propose a new algorithm based on representing the residual with respect to a dedicated
orthonormal basis, which is both easy to implement and requires little additional compu-
tational overhead. A numerical example is given to demonstrate the performance of the
proposed algorithm.

1 INTRODUCTION

Many problems in science and engineering require the solution of partial differential
equations on large computational domains or very fine meshes. Even on modern hardware,
standard discretization techniques for solving these problems can require many hours or
even days of computation, which makes these approaches inapplicable for many-query
situations like, e.g., design optimization, where the same problem has to be solved many
times for different sets of parameters.

The Reduced Basis Method (RB) is by now a well-established tool for the model order
reduction of problems formulated as parametrized partial differential equations. For a
general introduction we refer to [1] and [2]. In an “offline phase”, a given high-dimensional
discretization is solved for appropriately selected parameters and a reduced subspace is
constructed as the span of these solution snapshots. In a later “online phase”, the problem
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can be solved efficiently for arbitrary new parameters via Galerkin projection onto the
precomputed reduced space.

One crucial ingredient for the application of RB schemes is the availability of a quickly
evaluable a posteriori error estimator to reliably estimate the error introduced by the
reduction process. Such an estimator is also required by the weak greedy algorithm,
which has been shown to be optimal for the generation of the reduced spaces [3], to
efficiently perform an exhaustive search of the parameter space for parameters maximising
the reduction error.

For affinely decomposed elliptic problems, a residual based error estimator is widely
used [1, sec. 4.3]. In order to ensure quick evaluation of the dual norm of the residual, the
computation is decomposed into high-dimensional operations during the “offline phase”
and fast low-dimensional computations during the “online phase”. However, as observed
by several authors [1, pp. 148–149][4][5], the implementation of this offline/online splitting
shows poor numerical accuracy due to round-off errors which can render the estimator
unusable when the given problem is badly conditioned and high accuracy is required.
Observations suggest that the estimator typically stagnates at a relative error of order√
ε, where ε is the machine accuracy of the floating point hardware used.
In the following, we propose a new algorithm to evaluate the norm of the residual

which does not suffer the severe numerical problems of the traditional approach, is free
of approximations, has only small computational overhead and is easy to implement.

To our knowledge, there is only one other contribution in which a numerically stable al-
gorithm for evaluation of the estimator is presented [6, 7]. This approach however comes
at the price of a computationally more expensive “online phase” (in [6]) or increased
complexity of offline computations (in [7]) by application of the empirical interpolation
method, which in turn requires additional stabilization. Moreover, a proof for the relia-
bility of the modified estimator is missing in [7].

The remainder of this paper is organized as follows: In Section 2 we introduce the high-
dimensional discrete problem that we will consider in this work. In Section 3 we summarize
the Reduced Basis method including the weak greedy algorithm for basis generation. In
Section 4 we present the residual based error estimator under consideration, the traditional
algorithm for its evaluation as well as our proposed new algorithm. Finally, in Section 5
we give a numerical example underlining the improved stability of our new algorithm.

2 HIGH-DIMENSIONAL PROBLEM

We consider a discrete parametrized elliptic problem of the following form: let V be
a Hilbert space of finite dimension N , fµ ∈ V ′ a parametrized linear functional and
aµ : V × V → R a parametrized bilinear form such that for an αµ > 0 we have

αµ‖ϕ‖2V ≤ aµ(ϕ, ϕ) ∀ϕ ∈ V. (1)

We then search for the solution uµ ∈ V satisfying

aµ(uµ, ϕ) = fµ(ϕ) ∀ϕ ∈ V. (2)
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Note that the existence of a solution follows from the coercivity (1) of aµ and the finite
dimensionality of V . The parameter µ is confined to be an element of a fixed compact
parameter space P ⊂ RP . Moreover, we assume that aµ and fµ exhibit an affine parameter
dependence, i.e. there exist parameter independent bilinear forms aq : V × V → R (1 ≤
q ≤ Qa), linear functionals f q ∈ V ′ (1 ≤ q ≤ Qf ) and coefficient functionals θqa : P → R
and θqf : P → R such that

aµ(ϕ1, ϕ2) =

Qa∑
q=1

θqa(µ)aq(ϕ1, ϕ2) and fµ(ϕ) =

Qf∑
q=1

θqf (µ)f q(ϕ). (3)

3 REDUCED BASIS APPROXIMATION

Given smooth dependence of the solution uµ on the parameter µ, the dimension of the
manifold of all solutions {uµ |µ ∈ P} is bounded by dim(P) and, thus, is in general of much
lower dimension than V . The Reduced Basis method exploits this fact by constructing a
low-dimensional linear subspace Ṽ ⊂ V of dimension Ñ in which the solution manifold
can be approximated up to a small error. A reduced solution ũµ ∈ Ṽ is then determined

by Galerkin projection of (2) onto Ṽ , i.e. by solving

aµ(ũµ, ϕ̃) = fµ(ϕ̃) ∀ϕ̃ ∈ Ṽ . (4)

The solvability of (4) again follows from (1).

The reduced space Ṽ is constructed from the linear span of solutions to (2) for param-

eters selected by the following greedy search procedure: Starting with Ṽ 0 := {0} ⊂ V , in
each iteration step the reduced problem (4) is solved and an error estimator is evaluated
at all parameters µ of a given training set Strain ⊂ P . If the maximum estimated error
is below a prescribed tolerance tol, the algorithm stops. Otherwise, the high-dimensional
problem (2) is solved for the parameter µ∗n maximising the estimated error and the reduced

space is extended by the obtained solution snapshot: Ṽ n+1 := Ṽ n ⊕ span{uµ∗n}.

4 RESIDUAL BASED A POSTERIORI ERROR ESTIMATOR

An a posteriori error estimator provides a computable upper bound for the model
reduction error ‖uµ − ũµ‖V . We consider here a widely used error estimator based on the
discrete residual Rµ ∈ V ′ given by Rµ(ũµ)(ϕ) := fµ(ϕ)− aµ(ũµ, ϕ) for ϕ ∈ V .

Theorem 4.1. (Error bound) The model reduction error ‖uµ − ũµ‖V can be bounded
using the dual norm of the residual and the coercivity constant of the bilinear form:

‖uµ − ũµ‖V ≤
1

αµ
‖Rµ(ũµ)‖V ′ (5)

Proof. See [1, eq. 4.28].
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To calculate the dual norm of the residual Rµ(ũµ) we make use of the fact that the

norm of an element of Ṽ
′

is equal to the norm of its Riesz representative. Denoting by
R : V ′ → V the Riesz isomorphism and assuming the existence of a computable lower
bound αµ,LB ≤ αµ for the coercivity constant, we obtain a bound for the error containing
only computable quantities:

‖uµ − ũµ‖V ≤
1

αµ,LB
‖R(Rµ(ũµ))‖V (6)

Direct evaluation of this error bound comprises the calculation of the Riesz representative
and the computation of its norm, which are both high-dimensional operations. However,
for the application of the RB method in many-query and real-time situations, it is crucial
that the time for evaluating the a posteriori error estimator in the online phase is inde-
pendent of the dimension of V . This is also required to make the use of large parameter
training sets Strain feasible, which is necessary to ensure optimal selection of the snapshot
parameter µ∗.

4.1 Traditional offline/online splitting

In order to avoid high-dimensional calculations during the online phase, the residual
Rµ(ũµ) can be rewritten using the affine decompositions (3) and a basis representation of

ũµ. Let {ψ̃1, . . . , ψ̃Ñ} be a basis of Ṽ and let ũµ =
∑Ñ

i=1 ũµiψ̃i, then the Riesz representa-
tive of the residual is given as

R(Rµ(ũµ)) =

Qf∑
q=1

θqf (µ)R(f q)−
Qa∑
q=1

Ñ∑
i=1

θqa(µ)ũµiR(aq(ψ̃i, · )) . (7)

To simplify notation, we rename the Nη := Qf + QaÑ linear coefficients θqf (µ) and

θqa(µ)ũµi to αk and the vectors R(f q) and R(aq(ψ̃l, ·)) to ηk, i.e. R(Rµ(ũµ)) =
∑Nη

k=1 αkηk.
The space span{η1, . . . , ηNη} is denoted by Vη. For the norm of the residual we obtain

‖R(Rµ(ũµ))‖V =

(
Nη∑
k=1

Nη∑
l=1

αkαl (ηk, ηl)V

) 1
2

. (8)

Using this representation, an offline/online decomposition of the error bound is possible
by pre-computing the inner products (ηk, ηl)V during the offline stage. In the online stage,
only the sum in (8) has to be evaluated. As the number of summands is independent of
the dimension of V , an online run-time independent of the dimension of V is achieved.

While this approach leads to an efficient computation of the residual norm, it shows
poor numerical stability: in the sum (8), terms with a relative error of order of machine
accuracy ε are added. Therefore, the sum shows an absolute error of at least ε times the
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Algorithm 1: Gram-Schmidt with re-iteration

Input: vectors vi, i ∈ 1, . . . , N
Output: orthonormal vectors vi

1 for i← 1, . . . , N do
2 vi ← vi/‖vi‖V ;
3 repeat
4 for j ← 1, . . . , (i− 1) do
5 vi ← vi − (vi, vj)V vj;
6 end
7 newnorm ← ‖vi‖V ;
8 vi ← vi/newnorm;

9 until newnorm > 0.1;

10 end

largest value of |αkαl(ηk, ηl)V |, and the error in the norm of the residual is thus at least of
order

√
ε ·
√

maxk,l(|αkαl(ηk, ηl)V |). This is in agreement with the observation that this
algorithm stops converging at relative errors of order

√
ε (see Section 5).

4.2 Improved offline/online splitting

While the floating point evaluation of (8) shows poor numerical accuracy, note that
the evaluation of

‖R(Rµ(ũµ))‖V =

(
Nη∑
k=1

αkηk,

Nη∑
k=1

αkηk

) 1
2

V

(9)

is numerically stable. Based on this observation, we propose a new algorithm to evaluate
‖R(Rµ(ũµ))‖V which is offline/online decomposable while maintaining the algorithmic
structure of (9) to ensure stability.

The algorithm we propose evaluates (9) in the subspace Vη using an orthonormal basis
for this space. It comprises three steps: 1. The construction of an orthonormal basis
Ψη = {ψη1 , . . . , ψ

η
Nη
} of Vη, 2. the evaluation of the basis coefficients of ηk w.r.t. the basis

Ψη and 3. the evaluation of (9) using this basis representation. Note that this approach
is offline/online decomposable: Steps 1 and 2 can be done offline, without knowing the
parameter, while step 3 can be performed online. The size of the basis Ψη does not depend
on the dimension of V .

In principle, any orthonormalization algorithm applied to {ηk}Nηk=1 can be used for the
computation of the basis Ψη. Note, however, that the algorithm has to compute the basis
with very high numerical accuracy. As an example, the standard modified Gram-Schmidt
algorithm usually fails to deliver the required accuracy. For the numerical example in
Section 5, we have chosen an improved variant of the modified Gram-Schmidt algorithm,
where vectors are re-orthonormalized until a sufficient accuracy is achieved (Algorithm 1).
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After the basis Ψη has been constructed using an appropriate orthonormalization algo-
rithm, we can compute for each ηk (1 ≤ k ≤ Nη) basis representations ηk =

∑Nη
i=1 ηk,iψ

η
i ,

where ηk,i = (ηk, ψ
η
i )V due to the orthonormality of Ψη. The right-hand side of (9) can

then be evaluated as:

‖R(Rµ(ũµ))‖V =

 Nη∑
i=1

(
Nη∑
k=1

αkηk,i

)2
 1

2

, (10)

which executes in time independent of the dimension of V and is observed to be numeri-
cally stable.

4.3 Run-time complexities

During the offline phase, both the traditional and the new algorithm have to calculate
all Riesz representatives appearing in (7). This requires the application of the inverse
of the inner product matrix for V , which can be computed in complexity O(N log(N))
with appropriate preconditioners. As there are Nη Riesz representatives to be calcu-
lated, the overall run-time of this step is of order O(NηN log(N)). The traditional algo-
rithm proceeds with calculating all inner products (ηk, ηl)V in (8), having a complexity of
O(Nη

2N). Thus the overall complexity of the offline phase for the traditional algorithm
is O(Nη

2N +NηN log(N)).
After computing the Riesz representatives in (7), the improved algorithm generates

the orthonormal basis Ψη. In practice it was observed that at most four re-iterations
per vector are required during orthonormalization with Algorithm 1. Thus, choosing this
algorithm for the generation of Ψη leads to a run-time complexity of O(Nη

2N) for this
step. The calculation of the Nη

2 basis coefficients ηk,i = (ηk, ψ
η
i )V has again complexity

O(Nη
2N), resulting in a total complexity of the offline phase for the new algorithm of

O(Nη
2N +NηN log(N)), as for the traditional algorithm.

During the online phase, the right-hand sides of (8), resp. (10), are evaluated using
the pre-computed quantities (ηk, ηl)V , resp. ηk,i. In both cases, a run-time of O(Nη

2) is
required.

All in all, both algorithms for evaluating (6) show the same run-time complexity, in
the online phase as well as during the offline phase (Table 2). Note that O(Nη

2) =

O(Q2
f +Q2

aÑ
2) = O(Ñ2) for increasing reduced space dimensions.

5 NUMERICAL RESULTS

In order to verify the improved numerical stability of our proposed algorithm, we
considered an elliptic “thermal block” problem on the domain Ω = [0, 1]2 of the form

−∇ · (σµ∇uµ) = 1, uµ ∈ H1
0 (Ω), (11)
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Figure 1: High-dimensional solution of (11) for µ = (0.1, 1.0, 0.4, 1.0)

with heat conductivity σµ =
∑1

i,j=0 µij · χ[i/2,(i+1)/2]×[j/2,(j+1)/2], denoting by χA the char-

acteristic function of the set A. The parameters µ = {µij}1i,j=0 were allowed to vary in
the space P = [0.1, 1.0]4.

Equation (11) was discretized using linear finite elements on a regular grid with 500×
500× 2 triangular entities (Fig. 1). Then, a reduced space of dimension 35 was generated
with the weak greedy algorithm using our new algorithm for the evaluation of the error
estimator. An equidistant training set of 54 parameters was used. Finally, for each n-
dimensional reduced subspace Ṽn (0 ≤ n ≤ 35) produced by the greedy algorithm we
computed the maximum reduction error and the maximum estimated reduction errors
using both the traditional and our improved algorithm on 20 randomly selected new
parameters in P (Fig. 2a). Moreover, the maximum and minimum efficiencies (i.e. the
quotient error/estimate) of the estimator evaluated using both algorithms were determined
for the same random parameters (Table 1). Our results clearly indicate the breakdown
of the traditional algorithm for more than 25 basis vectors at a relative error of about
10−7 ≈

√
ε whereas our new algorithm remains efficient for all tested basis sizes.

To underline the need for accurate error estimation in order to obtain reduced spaces of
high approximation quality, we repeated the same experiment using the traditional algo-
rithm for error estimation during basis generation (Fig. 2b). While the maximum model
reduction error still improves from 10−7 to 10−8 after the breakdown of the error esti-
mator, the final reduced space approximates the solution manifold 4 orders of magnitude
worse than the space obtained with our improved algorithm.
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(a) New algorithm used for basis generation
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(b) Traditional algorithm used for basis
generation

Figure 2: Maximum relative reduction errors and estimated reduction errors (H1-norm)
for numerical example (11).

Table 1: Maximum and minimum efficiencies (H1-norm) of traditional and new error
estimator for numerical example (11); efficiencies were calculated for 20 randomly chosen
parameters.

basis size 10 15 20 25 30 35

trad. max 4.9 · 10−1 4.3 · 10−1 4.6 · 10−1 4.1 · 10−2 1.9 · 10−5 9.0 · 10−7

min 2.1 · 10−1 2.3 · 10−1 1.8 · 10−1 1.0 · 10−3 3.1 · 10−6 4.8 · 10−7

new max 4.9 · 10−1 4.3 · 10−1 4.7 · 10−1 3.9 · 10−1 4.6 · 10−1 4.6 · 10−1

min 2.1 · 10−1 2.3 · 10−1 2.2 · 10−1 2.1 · 10−1 2.3 · 10−1 2.4 · 10−1
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Table 2: Run-time complexities of traditional and new algorithm for evalution of the error
estimator.

stage offline online

traditional O(Nη
2N) +O(NηN log(N)) O(Nη

2)
new O(Nη

2N) +O(Nη
2N) +O(NηN log(N)) O(Nη

2)
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