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Abstract. Constrained viscoelastic layer is a traditional way of damping the vibrations of
a structure. In order to maximise the performances of a viscoelastic treatment, parametric
studies or optimisation procedures are performed, which both often require the use of
reduction techniques to limit their computational cost. This work aims at reviewing
reduction methods based on modal projection adapted for highly damped structures.
These methods are then compared in terms of precision and computational time of the
approximated solution on a benchmark example.

1 INTRODUCTION

Vibration reduction in structures has been a subject of investigation for many years.
Limiting resonant or nearly resonant vibrations is classically achieved through the use of
constrained damping layer (CLD) treatment, consisting in the insertion of a viscoelastic
layer at the core of the vibrating structure. An important tool in the design of such
structures is the numerical simulation of predictive models, which makes use of the finite
element approach. However, the 3D modelling of the viscoelastic layer, usually required
for a good representation of the shear behaviour, leads to dynamical models with a large
number of degrees of freedom, or large enough to prohibit design optimization. Model
reduction can be used to find a low-order model that approximates the behaviour of the
original high-order model, and thus reduce the computational cost of the analysis. This
work focuses on a class of reduction methods, based on modal projection: modes superpo-
sition methods. They consist in using a small number of vibration modes to represent the
dynamics of the structure with some reduced number of generalized degrees of freedom.
This operation reduces the system size to be solved and can result in important computa-
tional gain. However, the classical approach is based on the assumptions that the system
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is undamped or lightly damped, and that the eigenfrequencies are well separated. In the
case of highly damped systems, such as sandwich structures with viscoelastic insertion,
computational variants of the method have been developed. This papers aims at review-
ing the different variants of the mode superposition method available in the literature
for highly damped systems (section 2). A comparison is performed by application of the
methods to an illustrative example (section 3).

2 REVIEW OF MODE SUPERPOSITION METHODS

2.1 Limitations of the classical mode superposition approach

The finite element discretisation of the differential equations of a problem consisting
in an vibrating elastic structure results in the equations of motion of the system, which
in absence of damping are typically of the form:[

K− ω2M
]
U = F, (1)

where K and M are respectively the stiffness and the mass matrices, U represents the
solution vector, containing the unknown displacement of the structure, and F is the load
vector. The eigenvalue problem associated with Equation (1) is:[

K− ω2
kM
]
Φk = 0, (2)

where ωk and Φk are respectively the eigenfrequency and the eigenvector, also called
normal modes, associated to the mode k (k ∈ [1 . . . N ], with N the size of the system).
The normal modes span the solution space so that the solution vector U from Equation
(1) can be written as a weighted summation of vibration modes:

U =
N∑
k=1

Φkχk. (3)

The modal coordinates χk are solutions of the equation:

(ω2 − ω2
k)χk = ΦT

kF, (4)

which is obtained by projection of Equation (1) on the basis of normal modes, and by
application of the orthogonality conditions:

ΦT
r MΦs = δrs, (5)

ΦT
r KΦs = ω2

sδrs,

where δrs denotes the Kronecker delta.
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The idea behind mode superposition methods, introduced by Rayleigh, is to look for
the solution in a solution subspace of reduced dimension n (n < N), by truncating the
series in Equation (3):

U =
n∑
k=1

Φkχk +
N∑

k=n+1

Φkχk︸ ︷︷ ︸
truncated

. (6)

The approximated solution vector Ur is then described by n modes (n < N), associated
with the lowest eigenfrequencies:

Ur =
n∑
k=1

Φkχk. (7)

The effects of the truncated modes on the low frequency dynamic of the structure can be
taken into account by a static correction, which usually improves the solution:

Ur =
n∑
k=1

Φkχk + χstaticK
−1F. (8)

The approximated solution is then computed by projecting Equation (1) on the following
reduction basis:

T =
[
K−1F,Φ1, . . . ,Φn

]
. (9)

However, in the case of damped structures, such as structures with CLD treatments,
the equations of motion are of the following form:(

Ke +K∗(ω)Ks
v +G∗(ω)Kd

v − ω2M
)
U = F, (10)

where Ks
v and Kd

v are respectively the spheric and the deviatoric part of the stiffness
matrix associated with the viscoelastic layer, and Ke is the stiffness matrix associated
with the elastic structure. K∗(ω) and G∗(ω) are the frequency dependent complex bulk
and shear modulus of the viscoelastic material, which can be described by a fractional
derivative model [9]:

K∗(ω) =
K0 +K∞(iωτK)αK

1 + (iωτK)αK
G∗(ω) =

G0 +G∞(iωτG)αG

1 + (iωτG)αG
. (11)

Due to the frequency dependence of viscoelastic properties, the eigenproblem associated
with Equation (10) becomes nonlinear:[

K∗(λ∗k)− λ∗2k M
]
Φ∗k = 0, (12)

where the eigenfrequency λ∗2k = ω2
k(1 + iηk) and the normal modes Φ∗k are complex.

Several methods exist in the literature to solve nonlinear problems, such as the asymptotic
numerical method [1]. The latter gives an accurate estimation of the normal modes, which
can be used for projection. However, this method can be computationally expensive and
is out of the scope of this paper. Other methods, avoiding the resolution of a nonlinear
eigenvalue problem, are reviewed in the next sections.
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2.2 Modal strain energy method (MSE)

The modal strain energy method, introduced by Johnson and Kienholz [2], supposes
that the normal modes of the undamped system are representative of the normal modes
of the damped system. The projection basis is then defined as:

TMSE =
[
K−10 F,Φ1(0), . . . ,Φn(0)

]
, (13)

where Φk(0), referred to as pseudo-normal modes, are real and solution of:[
K0 − λ2kM

]
Φk = 0, (14)

and K0 = K∗(ω = 0) is the static stiffness matrix. This method gives good results
when the structure is lightly damped, but may lead to significant errors when it is highly
damped. Different approaches can be then adopted in order to improve the accuracy of
the approximated solution:

• extend the modal strain energy, by iteratively seeking a better approximation of the
complex modes solution of Equation (12) (section 2.3),

• combine several modal basis using the multi-model approach (section 2.4),

• enrich the modal basis of Equation (13) by addition of corrective terms (section
2.5).

2.3 Extensions of the modal strain energy

Iterative modal strain energy method (IMSE) While the modal strain energy
method uses a constant stiffness matrix for the calculation of the pseudo-normal modes,
the iterative modal strain energy method [3] considers the effects of a variation in the
complex moduli by computing the real undamped pseudo-normal modes of an iteratively
updated eigenproblem (Algorithm 1). The projection basis then consists of a static cor-
rection and pseudo-normal modes, obtained for the converged values of eigenfrequencies
of the following eigenproblem:[

< (K∗(ωp))− λ2k(ωp)M
]
Φk(ωp) = 0, (15)

where λ2k(ωp) and Φk(ωp) are respectively the eigenfrequency and the pseudo-normal mode
of the kth mode, computed for a stiffness matrix evaluated at ωp. Convergence is achieved
when:

|ωp − λk(ωp)|
λk(ωp)

< εtol, (16)

with εtol, chosen convergence criterion. This method supposes that the complex part of
the stiffness matrix does not affect the dynamic of the structure.
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Algorithm 1 Iterative modal strain energy algorithm.

1. Compute the n first couples (λk(0),Φk(0)), solutions of Equation (14).
2. Initialise the projection basis: TIMSE = [K−1F].
3. for j = 1 to n do
4. Initialise the frequency of evaluation of the complex moduli ωp = λj(0) and the

error ε = 1.
5. while ε > εtol do
6. Compute the j first couples (λk(ωp),Φk(ωp)), solutions of Equation (15).

7. Compute the error: ε =
|ωp − λj(ωp)|

λj(ωp)
.

8. Update the frequency of evaluation of the complex moduli ωp = λj(ωp).
9. end while

10. Update the projection basis TIMSE = [TIMSE,Φj(ωp)].
11. end for

Iterative complex eigensolution method (ICE) The iterative complex eigenso-
lution method [4] is similar to the IMSE method in the sense that the same iterative
algorithm is used (Algorithm 2). However, unlike the IMSE method which computes real
pseudo-normal modes, the projection basis of the ICE method is composed of complex
pseudo-normal modes, solutions of:[

K∗(ωp)− λ∗2k (ωp)M
]
Φ∗k(ωp) = 0. (17)

In the case of highly damped structures, the use of complex pseudo-normal modes in the
projection basis improves the accuracy of the approximated solution, but usually increases
the computational cost as well. Indeed, numerical solver are generally less efficient when
the eigenproblem to solve is complex.

Modified modal strain energy method (MMSE) The modified modal strain energy
method [5] constitutes a compromise between the IMSE and the ICE methods: it aims
at taking into account the complex part of the stiffness matrix without having to solve a
complex eigenproblem (Algorithm 3). This is done through an empirical coefficient:[

<(K∗(ωp)) + β(ωp)=(K∗(ωp))− λ2k(ωp)M
]
Φk(ωp) = 0, (18)

where the coefficient β(ωp) is computed as follows:

β(ωp) =
Tr (=(K∗(ωp)))

Tr (<(K∗(ωp)))
. (19)
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Algorithm 2 Iterative complex eigensolution algorithm.

1. Compute the n first couples (λk(0),Φk(0)), solutions of Equation (14).
2. Initialise the projection basis: TICE = [K−1F].
3. for j = 1 to n do
4. Initialise the frequency of evaluation of the complex moduli ωp = λj(0) and the

error ε = 1.
5. while ε > εtol do
6. Compute the j first couples (λ∗k(ωp),Φ

∗
k(ωp)), solutions of Equation (17).

7. Compute the error: ε =
|ωp −

√
<(λ∗2j (ωp))|√

<(λ∗2j (ωp))
.

8. Update the frequency of evaluation of the complex moduli ωp =
√
<(λ∗2j (ωp)).

9. end while
10. Update the projection basis TICE = [TICE,Φ

∗
j(ωp)].

11. end for

Algorithm 3 Modified modal strain energy algorithm.

1. Compute the n first couples (λk(0),Φk(0)), solutions of Equation (14).
2. Initialise the projection basis: TMMSE = [K−1F].
3. for j = 1 to n do
4. Initialise the frequency of evaluation of the complex moduli ωp = λj(0) and the

error ε = 1.
5. while ε > εtol do
6. Compute the coefficient β(ωp), using Equation (19).
7. Compute the j first couples (λk(ωp),Φk(ωp)), solutions of Equation (15).

8. Compute the error: ε =
|ωp − λj(ωp)|

λj(ωp)
.

9. Update the frequency of evaluation of the complex moduli ωp = λj(ωp).
10. end while
11. Update the projection basis TMMSE = [TMMSE,Φj(ωp)].
12. end for
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2.4 Multi-model approach (MM)

The multi-model approach is inspired by the Takani-Sugeno fuzzy model which is
often used to represent nonlinear dynamic systems by interpolating locally linear models
obtained from a nonlinear system. It has been applied by Balmès [6] to build a projection
basis representative of the complex nonlinear eigenvalue of Equation (12). This basis is
formed by a combination of several modal bases Tpj and the static correction:

TMM = [K−1F,Tp1 . . .Tpm ]. (20)

Each modal basis Tpj contains the pseudo-normal modes solutions of the following eigen-
value problem: [

K∗(ωpj)− λ∗2k (ωpj)M
]
Φ∗k(ωpj) = 0, (21)

where ωpj is imposed a priori. A strong colinearity may arise between the pseudo-normal
modes of several modal bases, which justifies the use of a Gramm-Schmidt orthonormal-
isation algorithm. In the literature, the projection basis composed of a static correction
and two modal bases evaluated at the minimum and the maximum frequency of the fre-
quency range investigated lead to good approximation of the dynamic response of highly
damped structures.

2.5 Enrichment of the projection basis

First-order correction (MSE+C) The resolution of a real eigenproblem usually im-
plies a computational cost much lower than that of a complex eigenproblem, which sup-
ports the common practice of neglecting the imaginary part of the stiffness matrix when
computing the pseudo-normal modes. However in case of highly damped structures, this
approximation is not justified and may lead to significant errors. Plouin and Balmès
[7] then proposed to complement the projection basis of Equation (13) by the static re-
sponse to the load generated by the imaginary part of the stiffness when exciting a given
pseudo-normal mode:

TMSE+C = [TMSE,K
−1
0 =(K∗(λ1))Φ1, . . . ,K

−1
0 =(K∗(λN))ΦN ]. (22)

where λk and Φk are the eigenfrequencies and pseudo-normal modes from Equation (14).
As in the multi-model approach, a orthonormalisation procedure may be applied.

Displacement residuals (MSE+R) The concept of this method, introduced by Balmès
and Bobillot [8], is to increase the accuracy of the approximation by enriching the pro-
jection basis of Equation (13) by the static response of a load residual:

TMSE+R = [TMSE,Rd]. (23)

where the residual Rd is computed as follows:

Rd(ω) = K−10

([
K∗(ω)− ω2M

]
Ur(ω)− F

)
. (24)
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The residuals calculated at the eigenfrequencies λk of the undamped eigenproblem (Equa-
tion (14)) are added to the projection basis, until a satisfying precision of the solution is
obtained, as indicated in Algorithm 4:

εR =

∣∣∣∣RT
dK0Rd

∣∣∣∣
2

||UT
r K0Ur||2

< εtol, (25)

where εR is a error estimate of the strain energy and εtol is a chosen criterion.

Algorithm 4 Procedure of enrichment of the projection basis by residuals.

1. Initialise the projection basis TMSE+R = TMSE.
2. for k = 1 to N do
3. Compute residual Rd(λk) according to Equation (24).
4. Compute the error estimate εR from Equation(25).
5. while εR > εtol do
6. Update and orthonormalise the projection basis : TMSE+R = [TMSE+R,Rdk(λk)].
7. Compute the residual Rd(λk) from Equation (24).
8. Compute the error estimate from Equation (25).
9. end while

10. end for

3 ILLUSTRATIVE EXAMPLE

The reduction methods described in the previous section can be combined in order to
improve the accuracy of the approximated solution. However, for the comparative purpose
of this work, each method is applied to a benchmark example and their performances, in
terms of precision and computational time, are assessed individually [9]. The sandwich
cantilever beam depicted in Figure 1(a) is considered for this study. The elastic faces of
the beam are made of steel and the core layer is made of Deltane 350, whose properties
have been measured by DMA (Figure 2). A fractional derivative model is used to represent
the frequency-dependent shear modulus (Figure 2):

G0 = 1.36 MPa, G∞ = 0.64 GPa, τ = 0.34 µs, α = 0.58, (26)

and the bulk modulus is assumed constant: K∗(ω) = 2.22 GPa. The three layers are
meshed using 20-nodes hexahedral elements, leading to a finite element model of the form
of Equation (10), with N = 13317 degrees of freedom (see Figure 1(b)). The frequency
response of the damped structure is calculated on the frequency range [0–800] Hz by
applying each of the reduction methods presented in the previous section, and compared
with the solution computed by a direct method. A convergence tolerance of 0.005 is
considered for the iterative variants of the modal strain energy, and the convergence
tolerance in the procedure of enrichment of the modal basis is set to 0.001. The dimensions
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of the beam have been chosen in order to introduce important damping in the structure,
as evidenced by the strongly attenuated resonance peaks in Figure 3. For each reduction
method, several criteria of selection of the pseudo-normal modes are taken: f < fmax,
f < 2fmax, f < 3fmax and f < 4fmax (Figure 4). Figure 3 compares the frequency
responses computed by each method when choosing f < 2fmax as the selection criterion,
which is the most commonly used in the literature. In order to compare the precision of
the approximated solution, two error estimators are calculated:

• the error between the approximated solution Ur and the solution U computed by
a direct method:

εU(ω) =
||Ur −U||2
||U||2

, (27)

• the square of the error estimator of the strain energy, defined in Equation (25).

Figure 3 clearly evidences the limitations of the modal strain energy method. It also
indicates the method with the modal basis enriched by displacement residuals as the
most precise. Figure 4 confronts the precision of the solution (defined as the mean of
the displacement error εU) with its relative computational time (defined as the ratio
between the computational time of the approximated solution to that of the solution
calculated by the direct method). From this comparison, four groups of methods can
be identified. The first one consists of the modal strain energy method, which allows a
quick but poorly accurate approximation of the solution. Conversely, the second group,
consisting of the iterative method of enrichment by displacement residuals, gives a very
accurate approximation of the solution but at the cost of a more important computational
time. This is due to the online calculation of the error estimate. The third group includes
the multi-model method and the modal strain energy method with first-order corrective
terms. They both represent a good compromise between precision and computational
time of the approximated solution. The iterative variants of the modal strain energy
method constitute the fourth and last group. These method do not represent a good
compromise between precision and computational time of the solution, but can be used
instead for a direct calculation of the modal parameters.

4 CONCLUSIONS

This paper reviews several reduction methods based on modal projection adapted for
highly damped structures, such as structures with viscoelastic treatments. The different
methods are tested and compared on a benchmark example. The multi-model method
and the modal strain energy method with first-order corrective terms are identified as
the methods presenting the best compromise between precision and computational time
of the approximated solution. However, the results of this analysis should only be used
as recommendations since they are dependent on the level of damping introduced in the
structure and the implementation of the reduction techniques.
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L = 0.3 m b = 0.02m

F
h = 0.0015 m

h = 0.0015 m

hc = 0.001 m

(a)

(b)

Figure 1: Geometry (a) and mesh (b) of the sandwich cantilever beam studied.
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Figure 2: Frequency-dependent shear modulus of Deltane 350, measured by DMA (crosses) and modelled
by a fractional derivative model (solid line).
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Figure 3: Frequency response and error estimators computed by the direct method, the modal strain
energy method (MSE), the iterative modal strain energy method (IMSE), the complex eigenvalue method
(ICE), the modified modal strain energy method (MMSE), the multi-model method (MM), the modal
strain energy method corrected with first-order terms (MSE+C) or residuals (MSE+R).
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energy method (MSE), the iterative modal strain energy method (IMSE), the complex eigenvalue method
(ICE), the modified modal strain energy method (MMSE), the multi-model method (MM), the modal
strain energy method corrected with first-order terms (MSE+C) or residuals (MSE+R).
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The reduction methods reviewed in this paper can be used in the frame of component
mode synthesis [10] or combined with Padé approximants for a further reduction of the
computational time [11].
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