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Abstract. In this work different high-order temporal schemes, used to advance in time
the DG space discretized equations, are investigated: the Explicit Singly Diagonally Im-
plicit Runge Kutta (ESDIRK), the Modified Extended BDF (MEBDF), the Two Implicit
Advanced Step-point (TIAS) and a Rosenbrock method. The proposed schemes are eval-
uated in terms of accuracy and efficiency for two unsteady test-cases: (i) the convection
of an inviscid isentropic vortex and (ii) the laminar flow around a cylinder.

1 INTRODUCTION

In recent years Discontinuous Galerkin (DG) methods have received increasing atten-
tion in Computational Fluid Dynamics (CFD) [1, 2] due to many attractive features,
such as the geometrical flexibility, the use of elements with different solution polyno-
mial approximation in the same grid and the compactness of the scheme. The DG space
discretized equations can be advanced in time using different time integration schemes.
Explicit Runge-Kutta methods are very popular for the solution of unsteady problems be-
cause they can match in time the high accuracy of the DG discretization. However these
schemes can be very inefficient due to the time-step restriction. Implicit time integration
schemes can be adopted to overcome this limitation, such as the multistep Backward
Differentiation Formulae (BDF) schemes. However, BDF are only A-stable up to the
second-order and their low accuracy is not well suited to match the spatial accuracy of
DG methods. In this work different high-order temporal schemes were investigated in
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terms of accuracy and efficiency. In particular the following schemes were considered: the
Explicit Singly Diagonally Implicit Runge Kutta (ESDIRK) [3], the Modified Extended
BDF (MEBDF) [4], the Two Implicit Advanced Step-point (TIAS) [5] and a Rosenbrock
method [12]. These schemes have been evaluated for two unsteady test-cases: (i) the
convection of an inviscid isentropic vortex and (ii) the laminar flow around a cylinder.

1.1 DG SPACE DISCRETIZATION

The Navier-Stokes (NS) equations can be written in compact form as

∂u

∂t
+ ∇ · Fc(u) + ∇ · Fv(u,∇u) = 0, (1)

where u is the vectors of the m conservative variables, and Fc,Fv ∈ R
m ⊗R

d are defined
as the arrays of the inviscid and viscous flux vectors. A weak formulation of the NS
equations is obtained multiplying each scalar law in Eq. (1) by an arbitrary smooth test
function vj ∈ v, 1 ≤ j ≤ m, and integrating by parts, that is

∫

Ω

vj
∂uj

∂t
dx−

∫

Ω

∇vj · Fj(u,∇u) dx +

∫

∂Ω

vjFj(u,∇u) · n dσ = 0, (2)

where Fj is the sum of the inviscid and viscous flux vectors of the j-th equation.
Let Ωh be an approximation of the domain Ω ∈ R

d, Th = {K} a mesh of Ωh, i.e.
a collection of “finite elements” K, Fh = {F} the mesh faces, and let Vh denotes a
discontinuous finite element space spanned by polynomial functions continuous only inside
each element K, i.e.

Vh
def
=
[
P
l
d (Th)

]m
, (3)

where
P
l
d

def
= {vh ∈ L2(Ωh) : vh|K ∈ P

l
d, ∀K ∈ Th} (4)

is the space of polynomials of degree at most l on the element K. Hierarchical and
orthogonal shape functions are adopted, and are obtained using a modified Gram-Schmidt
procedure, assuming as a starting point a set of monomial functions [9].

In Eq. (2) the solution u and the test function v are replaced with a finite element
approximation uh and a discrete test function vh respectively, where uh and vh belong to

the space Vh
def
= [Pl

d(Th)]
m. The discontinuous approximation of the numerical solution

requires to introduce a specific treatment of the inviscid and viscous interface fluxes. In
order to ensure conservation and correctly account for the waves propagation the former
is based on the Godunov flux computed with an exact Riemann solver. For the latter the
BR2 scheme, proposed in [6] and theoretically analyzed in [8, 7], is employed.
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Accounting for these aspects, the DG formulation of the compressible NS equations
consists in seeking uh ∈ Vh such that

∑

K∈Th

∫

K

vh,j
∂uh,j

∂t
dx−

∑

K∈Th

∫

K

∇hvh,j · Fj (uh,∇huh + r ([[uh]])) dx

+
∑

F∈Fh

∫

F

[[vh,j]] · F̂j

(
u±

h , (∇huh + ηFrF ([[uh]]))
±
)
dσ = 0

∀vh ∈ Vh, (5)

where [[ ]] is the jump operator, r and rF the global and local lifting operators, and ηF
is a penalty parameter prescribed accordingly to [7].

2 TIME INTEGRATION

The DG space discretization of Eq. (5) results in the following system of (nonlinear)
ODEs in time:

M
dU

dt
+R (U) = 0, (6)

where U is the global vector of unknown degrees of freedom, M is a global block diagonal
matrix and R (U) is the vector of residuals. The matrix M reduces to the identity matrix
due to the use of orthonormal basis functions.

In this work the system (6) is advanced in time in an implicit sense by using the
following schemes: the Explicit Singly Diagonally Implicit Runge Kutta (ESDIRK), the
Modified Extended BDF (MEBDF), the Two Implicit Advanced Step-point (TIAS) and
a Rosenbrock method.

2.1 MEBDF schemes

MEBDF schemes [4] are A-stable up to fourth order, and a k-step MEBDF scheme is of
order k + 1. Standard MEBDF schemes have some limitations; they are not self starting
from the third order and the time step must be constant during the simulation.

The k-step MEBDF involves three stages to advance the solution to the next time
step. The first two stages are k order BDF formulas, while the last stage combines the
two previous BDF evaluations, resulting in a k + 1 order solution. The three stages are
as follows:

1. Stage 1. Compute the first predictor Ūn+k as the solution of the k-step BDF:

M

∆t

(
Ūn+k +

k−1∑

j=0

α̂jU
n+j

)
+ β̂kR

(
Ūn+k

)
= 0.
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2. Stage 2. Compute the second predictor Ūn+k+1 as the solution of the k-step BDF:

M

∆t

(
Ūn+k+1 + α̂k−1Ū

n+k +

k−2∑

j=0

α̂jU
n+j+1

)
+ β̂kR

(
Ūn+k+1

)
= 0.

3. Stage 3. Compute the final solution Un+1 as

M

∆t

(
Un+k +

k−1∑

j=0

ᾱjU
n+j

)
+β̂kR

(
Un+k

)
+
(
β̄k − β̂k

)
R(Ūn+k)+β̄k+1R(Ūn+k+1) = 0.

α̂j and β̂k are the coefficients of the BDF, while ᾱj , β̄k and β̄k+1 are the coefficients of the
MEBDF.

The three non-linear systems are solved by means of an inexact Newton approach. In
particular the Jacobian matrix is computed at the stage 1 of the first time step and then
it is recomputed only if the convergence rate of the Newton method between iteration
j + 1 and j is above a given tolerance or after 10 time steps since the last evaluation. In
particular the Jacobian matrix is recomputed if the following relation is not satisfied:

‖∆Uj+1‖2
‖∆Uj‖2

> tolJ or n∆t > 10, (7)

where tolJ is a tolerance, which is set to 0.25, n∆t is the number of time steps and ‖∆Uj‖2
the L2 norm of the solution variation at the jth Newton iteration.

The linear system arising at each Newton step is solved using the restarted GMRES
algorithm preconditioned with the block Jacobi method as available in the PETSc library
[10].

2.2 TIAS schemes

TIAS schemes [5] are A-stable up to the sixth order, and a k-step TIAS scheme is of
order k + 1. Standard TIAS schemes have same limitations as MEBDF.

The k-step TIAS scheme involves four stages to advance the solution to the next time
step. The first three stages are k order BDF formulas, while the last stage combines the
three previous BDF evaluations, resulting in a k + 1 order solution. The four stages are
as follows:

• Stage 1. Compute the first predictor Ūn+k as the solution of the k-step BDF::

M

(
Ūn+k +

k−1∑

j=0

α̂jU
n+j

)
+∆tβ̂kR

(
Ūn+k

)
= 0.
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• Stage 2. Compute the second predictor Ūn+k+1 as the solution of the k-step BDF::

M

(
Ūn+k+1 + α̂k−1Ū

n+k +

k−2∑

j=0

α̂jU
n+j+1

)
+∆tβ̂kR

(
Ūn+k+1

)
= 0.

• Stage 3. Compute the third predictor Ūn+k+2 as the solution of the k-step BDF::

M

(
Ūn+k+2 + α̂k−1Ū

n+k+1 + α̂k−2Ū
n+k +

k−3∑

j=0

α̂jUn+j+2

)
+∆tβ̂kR

(
Ūn+k+2

)
= 0.

• Stage 4. Compute the final solution Un+1 as:

M

(
Un+k +

k−1∑

j=0

α̃jU
n+j

)
+∆t

[
β̃k+2R(Ūn+k+2) + β̃k+1R(Ūn+k+1)+

βkR(Ūn+k) +
(
β̃k − βk

)
R
(
Un+k

)]
= 0.

α̂j and β̂k are the BDF coefficients, while α̃j, β̃k+2, β̃k+1, β̃k and βk are the TIAS co-
efficients (Tab. 1). In particular, β̃k+2 and βk are free coefficients which determine the
stability properties of the scheme, and all the other coefficients are expressed in terms of
β̃k+2. The non linear system arising at each stage is solved by using the same approach
described for the MEBDF.

2.3 ESDIRK schemes

This class of Runge-Kutta schemes [3] can be constructed to be A- and L-stable for
any temporal order of accuracy. A s-stage ESDIRK scheme applied to the system (6) can
be written as

U0 = Un

Us = Un −∆t
i∑

j=1

aijM
−1R(Uj), i = 1, . . . , s

Un+1 = Us
h

where aij are the Butcher coefficients of the scheme. The first stage is explicit due to
a11 = 0 and the last stage defines the solution for the subsequent step. The s non linear
problems arising at each time step are solved by using the same strategy proposed for the
MEBDF schemes.
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k α̃0 α̃1 α̃2 α̃3 α̃4

1 -1
2 5

23
− 12

23
· β̃k+2 −28

23
+ 12

23
· β̃k+2

3 − 17
197

+ 165
197

· β̃k+2
99
197

− 648
197

· β̃k+2 −279
197

+ 483
197

· β̃k+2

4 111
2501

− 8018
7503

· β̃k+2 − 728
2501

+ 14427
2501

· β̃k+2
2124
2501

− 29106
2501

· β̃k+2 −4008
2501

+ 52055
7503

· β̃k+2

5 − 394
14919

+ 74711
59676

· β̃k+2
2925
14919

− 123215
14919

· β̃k+2 −3200
4973

+ 11762
4973

· β̃k+2
18700
14919

− 459473
14919

· β̃k+2 −26550
14919

+ 914897
59676

· β̃k+2

k β̃k β̃k+1

1 3
2
+ β̃k+2 −1

2
− 2 · β̃k+2

2 22
23

+ 53
23

· β̃k+2
4
23

− 64
23

· β̃k+2

3 150
197

+ 827
197

· β̃k+2 − 18
197

− 706
197

· β̃k+2

4 1644
2501

+ 16767
2501

· β̃k+2 − 144
2501

− 10998
2501

· β̃k+2

5 2940
4973

+ 48933
4973

· β̃k+2 − 200
4973

− 25961
4973

· β̃k+2

Table 1: Coefficients of the k-steps TIAS corrector stage.

2.4 Linearly implicit Rosenbrock-type Runge–Kutta schemes

Unlike the methods reported above, the linearly implicit (Rosenbrock-type) Runge–
Kutta schemes involve the solution of a sequence of linear instead of non-linear systems.
In this paper we consider the RODASP, fourth-order six stages, scheme of Steinbach [12].
Besides the systems of Ordinary Differentaial Equations (ODEs) here considered, these
schemes can also accurately be applied to systems of (non-linear) Differential Algebraic
Equations (DAEs) that can arise from the discretization of incompressible flows, see [13].
This class of methods, applied to the system 6, can be compactly written as

Un+1 = Un +
s∑

j=1

bjKj, (8)

(
M

∆t
+ γJ

)
Ki = −R

(
Un +

i−1∑

j=1

αijKj

)
− J

i−1∑

j=1

γijKj i = 1, · · · , s, (9)

where bi, αij , γij are real coefficients and J is the Jacobian matrix of the DG space
discretization that is computed analytically to fully account for the dependence of the
residuals on the unknown vector and its derivatives including the implicit treatment of the
lifting operator and of boundary conditions. A direct implementation of Eq. 9 requires at
each stage the matrix-vector multiplication J

∑i−1
j=1 γijKj. In practice this can be avoided

by resorting to the following equivalent formulation
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Un+1 = Un +
s∑

j=1

mjYj, (10)

(
M

γ∆t
+ J

)
Yi = −R

(
Un +

i−1∑

j=1

aijYj

)
−

M

γ∆t

i−1∑

j=1

cijYj i = 1, · · · , s, (11)

where for i = 1, · · · , s

Ki =
1

γ
Yi −

i−1∑

j=1

cijYj, (12)

and mj , aij and cij are the transformed coefficients of the scheme, see [14].
Each stage of Eq. 11 requires to solve a linear system of the form Ax+b = 0. However,

since the matrix A is the same at each stage, the Jacobian matrix needs to be evaluated
only once. The linear system can be solved using the GMRES (Generalized Minimal
RESidual) algorithm, preconditioned with the block Jacobi method.

3 RESULTS

In this section the performance and potential of the temporal schemes described in the
previous section are investigated for two test-cases: (i) the convection of an inviscid isen-
tropic vortex and (ii) the laminar flow around a cylinder. The notations BDFx, MEBDFx,
TIASx, ESDIRKx and RODASPx indicate the x-th order schemes. The computing time
is reported in the figures as a normalized value with respect to the TauBenchmark [11]
value, tTauBench, obtained on a full node of the cluster used for the CFD simulations
1. The normalized computing time is measured as work units (WU) and is defined as
WU=(tCPU ∗ ncores)/tTauBench, where tCPU is the wall clock time and ncores the numbers
of cores used for the simulation.

3.1 Convection of an isentropic vortex

The free stream values of the vortex problem were the flow density ρ∞, the velocity
vector components u∞ and v∞, the pressure p∞ and the temperature T∞, which were set
to (ρ∞, u∞, v∞, p∞, T∞) = (1, 1, 1, 1, 1). At t0 = 0 the free stream flow was perturbed by
an isentropic vortex (δu, δv, δT ) centered at (x0, y0) and defined as:

δu = −
α

2π
(y − y0) e

φ(1−r2), (13)

δv =
α

2π
(x− x0) e

φ(1−r2), (14)

δT = −
α2 (γ − 1)

16φγπ2
e2φ(1−r2), (15)

1-n 250000 -s 10 define the reference TauBench workload for the hardware benchmark
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where γ = 1.4 is the ratio of specific heats, φ = 1
2
and α = 5 are parameters which

determine the strength of the vortex, r =
√

(x− x0)
2 + (y − y0)

2 is the distance of a

generic point (x, y) from the vortex center (x0, y0), which is set to (5, 5) in a periodic
domain [0, 10] × [0, 10]. The computations were performed on a uniform cartesian grid
of 50× 50 quadrilaterals with a simulation time equal to the vortex revolution period T
and a P

6 solution approximation. In Fig. 1 (left) the initial flowfield is depicted. Figure 1
(right) compares the exact and the computed pressure profiles along the square diagonal
using BDF2, MEBDF4, TIAS4 and TIAS6 for the timestep T/40. Notice that only using
sixth order TIAS scheme the minimum value of the pressure is not smoothed out, while
the solution obtained with BDF2 is completely wrong,

d

p
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0.9

1

Exact
BDF2
MEBDF4
TIAS4
TIAS6

d

p

6.8 7 7.2 7.4

0.38

0.4

0.42

0.44

Figure 1: Vortex: pressure initial flow field (left) and comparison between computed and exact pressure
profiles along the domain diagonal for BDF2, MEBDF4, TIAS4 and TIAS6, P6 solution

The analysis of the design-order convergence was performed for progressively smaller
time steps, by keeping a high-order solution approximation (P6) to minimize the spatial
discretization error. In Fig. 2 (left) the L2 norm of the pressure error as a function of the
time step is depicted, showing that all schemes verify their design-order convergence.

All temporal schemes and BDF2 were compared to assess their computational efficiency
and to understand when high-order temporal schemes could be advantageous. Figure 2
(right) shows the L2 norm of the pressure error as a function of the work units. Some
high-order temporal schemes (MEBDF4, TIAS6, RODASP4) can always achieve greater
accuracy than BDF2 with a comparable CPU time. RODASP4 is the more efficient
scheme for large time steps, while for small time steps TIAS6 performs better. RODASP4
guarantees also the lowest error level.
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Figure 2: Vortex: L2 norm of the pressure error as a function of the time step (left) and of the normalized
CPU time (right), P6 solution

3.2 Unsteady vortex shedding behind a circular cylinder

The second test-case was the laminar flow around a two-dimensional circular cylinder
computed for a Mach number M∞ = 0.2 and a Reynolds number Re = 100. The com-
putational grid was a quadratic mesh containing 3690 quadrilateral. Figure 3 shows the
potential of the TIAS6 scheme in comparison with the BDF2. The density and velocity
contours are depicted after 30 vortex shedding periods, highlighting the greater accuracy
provided by the TIAS6 scheme.

Figure 3: Cylinder: density (left column) and velocity magnitude (right column) fields after 30 vortex
shedding periods. Top row: BDF2. Bottom row: TIAS6. P5 solution

The analysis of the design-order convergence was performed for progressively smaller
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time steps and for a simulation time equal to 1.5T , where T was the vortex shedding
period. A high-order solution approximation, i.e. P5, was used to minimize the spatial
discretization error. For this test-case an exact solution was not available and, hence,
the TIAS6 scheme was used to compute a reference solution with a very small time step
∆t = T/5120. Fig. 4 (left) shows the lift coefficient error (the error is defined with respect
to the reference CL computed with TIAS6) as a function of the time step. All schemes
verified their design-order convergence.

All temporal schemes and BDF2 were compared to assess their computational efficiency
and to understand when high-order temporal schemes could be advantageous. Figure 4
(right) shows that also for this testcase the high-order temporal schemes can achieve
greater accuracy than BDF2 with a comparable CPU time. However, for large time steps
and high error levels (10−2) BDF2 scheme seems to be more efficient. RODASP4 and
TIAS6 have the same behaviour shown in the previous test case. RODASP4 performs
slightly better for large time steps, while TIAS6 is better for small time steps.

time step

er
r(

C
L)

10-2 10-1 10010-10

10-8

10-6

10-4

10-2

100

BDF2
MEBDF3
MEBDF4
ESDIRK4
TIAS4
TIAS6
RODASP4

work units

er
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0 5000 10000 15000 20000
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10-8

10-6

10-4

10-2

100

BDF2
MEBDF3
MEBDF4
ESDIRK4
TIAS4
TIAS6
RODASP4

Figure 4: Cylinder: CL error as a function of the time step (left) and of the normalized CPU time
(right), P5 solution

4 CONCLUSIONS

In this work different high-order temporal schemes, used to advance in time the DG
space discretized equations, have been investigated. The accuracy and the efficiency of
these methods have been compared by computing two test cases: the convection of an
inviscid isentropic vortex and the unsteady laminar flow around a circular cylinder.

The design-order convergence has been verified for all schemes on both testcases, show-
ing the greater accuracy reached by these schemes in comparison to the standard BDF2
for the same time step. The computational efficiency of the schemes has been also evalu-
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ated and compared with BDF2. In general BDF2 scheme seems to be more efficient only
for large time steps and high error levels (10−2). Best schemes in terms of efficiency are
the RODASP4 and TIAS6.
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