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Abstract. Shape memory alloys (SMAs) offer interesting perspectives in various fields
such as aeronautics, robotics, biomedical sciences, or structural engineering. The distinc-
tive properties of those materials stem from a solid/solid phase transformation occurring
at a microscopic level. Modeling the rather complex behavior of SMAs is a topic of active
research. Lately, SMA models coupling phase-transformation with permanent inelasticity
have been proposed to capture degradation effects which are frequently observed experi-
mentally for cyclic loadings. In this paper, the classical static and kinematic shakedown
of plasticity theory are extended to such material models. Those results gives conditions
for the energy dissipation to remain bounded, and might be relevant for the fatigue design
of SMA systems.

1 INTRODUCTION

This communication is concerned with shakedown theorems for Shape Memory Alloys
(SMAs). The peculiar properties of SMAs are the result of a solid/solid phase transfor-
mation between different crystallographic structures. Much effort has been devoted to
developing constitutive laws for describing the behaviour of SMAs. The phase transfor-
mation is typically tracked by an internal variable α1 which - depending on the complexity
of the material model - may be scalar or vectorial [1, 6, 11, 12]. In most of SMA models,
the internal variable α1 must comply with some a priori inequalities that result from the
mass conservation in the phase transformation process. The presence of such constraints
constitutes a crucial difference with standard plasticity models, and calls for special at-
tention when the structural evolution problem is considered [6, 16, 22, 21] . Non-smooth
mechanics [5] offer a sound mathematical framework for handling constraints on state
variables. The large-time behavior of solids in non-smooth mechanics has been addressed
in [18]: a static shakedown theorem has been proposed, taking the form of a sufficient
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condition for the evolution to become elastic in the large-time limit. When the shakedown
limit provided by that theorem is exceeded, it was found that the large-time behaviour
is dependent on the initial state: in the case of cyclic loadings, some initial conditions
lead to shakedown whereas some others lead to alternating phase transformation. Such a
feature is not found in standard plasticity.

The shakedown theorem in [18] is path-independent - in the spirit of the original Melan
theorem [14, 9] - and applies to a wide range of constitutive models of phase transfor-
mation in SMAs. Lately, models coupling phase-transformation and plasticity have been
proposed in an effort to describe permanent inelasticy effects which are experimentally
observed in SMAs [2, 10, 23, 3]: although phase transformation in SMAs is the main
inelastic mechanism, dislocation motions also exist and are (partly) responsible for such
effects as training and degradation in cyclic loadings. To model such a behavior, two
internal variables are generally introduced: in addition to the (constrained) variable α1

describing the phase transformation, an additional variable α2 is used to describe per-
manent inelasticity. As discussed in [2, 23], it is essential to introduce a coupling term
between those two variables in the free energy. Extending the approach used in [18], we
present a static shakedown theorem for SMA models coupling phase-transformation and
permanent inelasticity. For a parametrized loading history, that theorem gives a ’static’
safety factor with respect to shakedown. Using min-max duality, a kinematic theorem and
a corresponding ’kinematic’ safety factor are introduced. Because of space limitations and
so as not to obscure the presentation, we only sketch the proofs of the theorems.

2 CONSTITUTIVE LAWS

We first describe the class of constitutive models that we consider in this paper. The lo-
cal state of the material is described by the (linearized) strain ε and two internal variables
(α1,α2) living respectively in vectorial spaces denoted by A1 and A2. The variable α1

tracks the phase transformation, whereas the variable α2 describes permanent inelasticity
effects. Because of mass conservation in the phase transformation process, the variable α1

is constrained to take values in a given bounded subset T1 of A1. The set T1 is assumed to
be closed and convex in the following. Adopting the framework of generalized standard
materials in non-smooth mechanics [8, 5], the behaviour of the material is determined
by the free energy function w(ε,α1,α2) and the dissipation potential Φ(α̇1, α̇2). More
precisely, denoting by α̇i the left-time derivative of αi, the constitutive equations are

σ =
∂w

∂ε
(ε,α1,α2) , Ai = − ∂w

∂αi
(ε,α1,α2), (1)

A1 = Ad
1 +Ar

1, A2 = Ad
2,

(Ad
1,A

d
2) ∈ ∂Φ(α̇1, α̇2),

Ar
1 ∈ ∂IT1

(α1),
(2)
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where σ is the stress, Ai is the thermodynamical force associated to αi, and ∂ is the
subdifferential operator [4]. We consider free energy functions w(ε,α) of the form

w(ε,α) =
1

2
(ε−K1.α1 −K2.α2) : L : (ε−K1.α1 −K2.α2) + f(α1,α2) + h(α1) (3)

where L is a symmetric positive definite, K1 and K2 are linear operators, f : T1×A2 7→
R+ is a convex differentiable function, h : T1 7→ R+ is differentiable (but not necessarily
convex). With the form (3) of the free energy, the relation (1) becomes

σ = L : (ε−K1.α1 −K2.α2) ,
A1 = tK1 : σ − f,1(α1,α2)− h′(α1) ,
A2 = tK2 : σ − f,2(α1,α2)

(4)

where tKi is the transpose of Ki and f,i is the partial derivative of f with respect to αi.
It is convenient to use the compact notations α = (α1,α2), Ad = (Ad

1,A
d
2), Ar =

(Ar
1, 0). The gradient of the function f (resp. h) with respect to α is denoted by ∇f

(resp. ∇h), i.e∇f = (f,1, f,2) and∇h = (h′(α1), 0). We also introduce the linear operator
K defined on A1 ×A2 by the relation K.α = K1.α1 +K2.α2. Eq. (4) can be rewritten
in the compact form

σ = L : (ε−K.α) ,
A = tK : σ −∇f(α)−∇h(α).

(5)

As usual in the framework of standard generalized materials, the dissipation potential
Φ is assumed to be convex, positive, null at the origin. Those standard requirements
ensure the positiveness of the dissipation, in compliance with the second principle of
thermodynamics. The convex set C = ∂Φ(0) can be interpreted as the elasticity domain
of the material.

As stated in the introduction, the class of constitutive models considered in this paper is
motivated by recently proposed models of phase transformation coupled with permanent
inelasticity. As an illustrative example, we consider the model proposed in [2]. With the
present set of notations, the internal variable α1 in that model is a deviatoric second-order
tensor submitted to the restriction ‖α1‖ ≤ αT where αT is a material parameter. The
internal variable α2 is a deviatoric second-order tensor that can take any value. The free
energy w is of the form (3) with h = 0, K2 = 0, K1 = I, and

f(α) = β‖α1 −α2‖+
1

2
a1‖α1‖2 +

1

2
a2‖α2‖2 − bα1.α2.

In that last expression, β, a1, a2 and b are all material parameters. In particular, β is
non-negative in the super elastic regime, i.e. for sufficiently high temperature. In such
condition, the function f is convex provided that

a1 + a2 ≥ 0 , a1a2 − b2 ≥ 0. (6)
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Typical values used in [2] are a1 = 103 MPa, a2 = 1.5 104 MPa, b = 2 103 MPa, which
satisfy (6). The elasticity domain C in [2] consists of pairs (A1,A2) of deviatoric tensors
verifying

‖A1‖+ κ‖A2‖ ≤ R (7)

where κ and R are non-negative material parameters.

3 QUASI-STATIC EVOLUTION OF A CONTINUUM

We now consider a continuum submitted to a prescribed loading history. The con-
tinuum occupies a domain Ω and is submitted to body forces f d. Displacements ud are
imposed on a part Γu of the boundary Γ, and tractions T d are prescribed on ΓT = Γ−Γu.
The given functions f d,ud,T d depend on position x and time t. The stress and state
variables (σ, ε,α) in the continuum are also expected to depend on (x, t). In order to
alleviate the expressions, this dependence will be omitted in the notations, unless in the
case of possible ambiguities.

Quasi-static evolutions of the continuum are governed by the following system:

σ ∈ Kσ , ε ∈ Kε , α ∈ T ,
Ad ∈ ∂Φ(α̇) , Ar ∈ ∂IT (α),

σ = L : (ε−K.α),
tK : σ −∇f(α)−∇h(α) = Ad +Ar,

(8)

where Kσ and Kε are respectively the sets of admissible stress and strain fields, defined
by Kσ = {σ : divσ + f d = 0 in Ω;σ.n = T d on ΓT} and Kε = {ε : ε = (∇u +
t∇u)/2 in Ω; u = ud on Γu}. The set T in (8) is the subset of A1 × A2 defined by
T = T1×A2. Note that anyAr ∈ ∂IT (α̇) is of the formAr = (Ar

1, 0) withAr
1 ∈ ∂IT1

(α̇1).

We introduce the so-called fictitious elastic response (σE, εE) of the continuum, defined
by

σE ∈ Kσ , εE ∈ Kε ,σE = L : εE. (9)

Setting ρ = σ − σE and noting that ε = εE + L−1 : ρ + K.α, the system (8) can be
recast as

ρ ∈ K0
σ , α ∈ T ,

Ad ∈ ∂Φ(α̇) , Ar ∈ ∂IT (α),
L−1 : ρ+K.α ∈ K0

ε ,
tK : (σE + ρ)−∇f(α)−∇h(α) = Ad +Ar.

(10)

The sets K0
σ and K0

ε in (10) are defined by

K0
σ = {σ : divσ = 0 in Ω;σ.n = 0 on ΓT},
K0
ε = {ε : ε = (∇u+t ∇u)/2 in Ω; u = 0 on Γu}.

(11)

In the following, we examine conditions under which the energy dissipation
∫ T

0

∫
Ω
Ad.α̇dxdt

remains bounded (with respect to time T ) for all solutions of the evolution problem (10)
(or equivalently (8)). Such a situation is refered to as shakedown.
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4 STATIC SHAKEDOWN THEOREM

Assume there exists m > 1, T > 0 and time-independent fields (ρ∗,α∗,A
r
1,∗) ∈ K0

σ ×
T × A1 such that

tK : (mσE + ρ∗)−∇f(α∗)−∇h(α∗)−
(
Ar

1,∗
0

)
∈ C (12)

for all t ≥ T . Let (ρ,α,Ad,Ar) be an arbitrary solution of the evolution problem (10)
and define

W (t) =

∫
Ω

1

2
(ρ− ρ∗

m
) : L−1 : (ρ− ρ∗

m
) + f(α) + h(α) dx. (13)

Since f ≥ 0, h ≥ 0 and L is a positive definite tensor, the function W is positive for all
t. For t ≥ T we have

Ẇ (t) =

∫
Ω

[(ρ− ρ∗
m

) : L−1 : ρ̇+ (∇f(α) +∇h(α)).α̇] dx

where the distinctive property ρ̇∗ = 0 has been used.
Following a reasoning similar to [18] leads to the inequality

(m− 1)

∫ t

T

D(t) dt ≤ mW (T ) +

∫
Ω

[−f(α∗) +∇f(α∗).(α∗ −α(T ))] dx

+

∫
Ω

(Ar
∗ +∇h(α∗)).(α(t)−α(T )) dx

(14)

where Ar
∗ = (Ar

1,∗, 0). Now observe that the very last term in (14) can be bounded
independently on time t. Since T1 is bounded, there indeed exists a constant K > 0 such
that ‖α1‖ ≤ K for all α1 ∈ T1. We have

‖(Ar
∗ +∇h(α∗)).(α(t)−α(T ))‖ = ‖(Ar

1,∗ + h′(α1,∗)).(α1(t)−α1(T ))‖
≤ ‖Ar

1,∗ + h′(α1,∗)‖.‖α1(t)−α1(T )‖
≤ 2K‖Ar

1,∗ + h′(α1,∗)‖

Therefore

(m− 1)

∫ t

T

D(t) dt ≤ mW (T ) +

∫
Ω

[−f(α∗) +∇f(α∗).(α∗ −α(T ))] dx

+2K

∫
Ω

‖Ar
∗ +∇h(α∗)‖ dx

(15)

The right-hand side of that last inequality is independent on t and therefore
∫ t
T
D(t) dt is

bounded as t→ +∞. The condition (12) thus gives a sufficient condition for shakedown
to occur. Since the field Ar

1,∗ in (12) is free from any constraint, Eq.(12) is equivalent to

ρ∗ ∈ K0
σ,α∗ ∈ T ,B1 ∈ A1,(

tK1 : (mσE + ρ∗)−B1
tK2 : (mσE + ρ∗)− f,2(α∗)

)
∈ C (16)
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Let B2 = {f,2(α) : α ∈ T }. Eq. (16) can equivalently be rewritten as

ρ∗ ∈ K0
σ,B1 ∈ A1,B2 ∈ B2,(

tK1 : (mσE + ρ∗)−B1
tK2 : (mσE + ρ∗)−B2

)
∈ C (17)

Using the notation B = (B1,B2), Eq. (17) becomes

ρ∗ ∈ K0
σ,B ∈ A1 × B2,

tK : (mσE + ρ∗)−B ∈ C
(18)

We can thus state the following theorem:

Static shakedown theorem. If there exists m > 1, T ≥ 0 and time-independent fields
(ρ∗,B) such that Eq.(18) is satisfied for all t ≥ T , then there is shakedown, whatever the
initial condition is.

There is a simple geometric interpretation of that theorem: consider the curve Γ(t)
described by tK : (mσE + ρ∗) in the space A1 × A2. Shakedown occurs if, up to a
translation in A1 ×B2, the curve Γ is enclosed in the elasticity domain C.

As an example, consider the material model in [2] as briefly described in section 2. Using
the presented theorem, it can be easily be seen that shakedown occurs if ‖msE(t)−B1‖ ≤
R where sE is the deviatoric part of σE. The obtained shakedown condition thus reduces
to a restriction on the diameter of the curve sE(t), as for shakedown in linear kinematic
hardening plasticity [13, 15].

Observe that we did not assume the convexity of h. This is a welcome feature for the
shakedown analysis of SMA structures as the function h associated with some microme-
chanical SMA models is not necessarily convex [7, 17, 19, 20].

For simplicity, from here onward we restrict our attention to cyclic loadings: the func-
tion σE is assumed to be periodic in time with a period T . The static shakedown theorem
motivates the definition of the static safety coefficient mS by

mS = sup{m : ∃(ρ∗,B) verifying (18) for all 0 ≤ t ≤ T} (19)

In practice, one may select particular values of (ρ∗,B) (possibly through numerical pro-
cedure), which leads to lower bounds on mS. Upper bounds on mS can be obtained by a
kinematic shakedown theorem, as presented in the next section.

5 KINEMATIC SHAKEDOWN THEOREM

Consider m > 0 such that (18) is satisfied for t ∈ [0, T ] by some time-independent
fields (ρ∗,B). Let α(t) : [0, T ] 7→ T be such that

α1(0) = α1(T ) , K2.(α2(T )−α2(0)) ∈ K0
ε . (20)
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Let
P (α̇) = sup

A∈C
A.α̇.

Since tK : (mσE + ρ∗)−B ∈ C, we have

(tK : (mσE + ρ∗)−B).α̇ ≤ P (α̇).

Integrating over the domain Ω and over the time interval [0, T ], we obtain, omitting the
details of the calculations,

m ≤

∫ T

0

∫
Ω

P (α̇)dxdt+M

∫
Ω

‖α2(T )−α2(0)‖dx∫ T

0

∫
Ω

σE : K.α̇dxdt

where M = sup{‖B2‖ : B2 ∈ B2}. From the definition (19) we can thus formulate the
following theorem:

Kinematic shakedown theorem. We have mS ≤ mK where mK is the kinematic safety
coefficient defined by

mK = inf
{∫ T

0

∫
Ω

P (α̇)dxdt+M

∫
Ω

.‖α2(T )−α2(0)‖dx∫ T

0

∫
Ω

σE : K.α̇dxdt

: α(t) verifying (20)
}

In practice, selecting special fields α(t) gives an upper bound on mK and consequently
an upper bound on mS.

If B2 is unbounded, i.e M = ∞, then one should only consider fields α(t) verifying
that αi(0) = αi(T ) for i = 1, 2. In particular, for the model in [2], the safety coefficient
mK becomes

mK = inf
{ ∫ T

0

∫
Ω

P (α̇)dxdt∫ T

0

∫
Ω

σE : α̇1dxdt

: α(t) verifying α(0) = α(T )
}

6 CONCLUDING REMARKS

In this paper, we have presented a static and a kinematic shakedown theorems for SMA
models coupling phase-transformation with permanent inelasticity. We emphasize that
those theorems are path-independent: the obtained shakedown conditions do not depend
on the initial state of the system (which for instance would correspond to some initial
residual stress). Since there is an established connection between fatigue and energy
dissipation, the proposed theorems could possibly be useful for the fatigue design of SMA
systems. Further investigation is required to clarify that point.
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