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Abstract. In ordinary fluids with Pr ∼ 1 it is well known that a two equation turbulence
model with a constant turbulent Prandtl number Prt ∼ 0.85 is usually sufficient to
correctly predict heat transfer in fully turbulent flows. On the contrary, in heavy liquid
metals the simple hypothesis of constant Prt cannot reproduce experimental data and the
turbulent Prandtl number Prt has to be introduced as a function of state variables. In
this work we introduce a four parameter turbulence model that may improve heat transfer
prediction in fully developed heavy liquid metal flows. The turbulent heat flux transport
equation is solved algebraically and an expression for the thermal eddy diffusivity αt is
obtained. This quantity depends on the thermal and dynamical time scales of turbulence
and their ratio. A four parameter turbulence model κ-ε-κθ-εθ for low-Prandtl number
fluids has been already presented by the authors with satisfactory results. The main
problem of the κ-ε models is the stability of the system since ε is a function of κ on the
boundary. The introduction of the κ-ω system allows to calculate directly the time scale
of turbulence as τ = ω−1 and to achieve a more stable and robust solution near the wall.
Numerical results are obtained by using an in-house code with a standard finite element
implementation of Navier-Stokes equations coupled with the four parameter turbulence
model. The code allows multiple refinement of the mesh in order to improve the solution
and to correctly impose the boundary conditions with a near-wall approach. Results from
simulations of fully developed turbulent flows of heavy liquid metals are reported for the
plane and cylindrical geometries, in particular for the heat transfer between a wall heated
with uniform heat flux and the liquid metal flow. The results are compared with DNS
data when available and with experimental heat transfer correlations for the prediction
of the Nusselt number in order to evaluate the turbulence model.
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1 INTRODUCTION

Heavy liquid metals are studied from several years by the engineering community,
since these fluids are considered as coolants for fast nuclear reactors, in order to achieve
the necessary requirements for the Generation IV nuclear reactors. These fluids show a
peculiar heat transfer and fluid-dynamic properties because of their very high conductivity
and low viscosity. For these characteristic physical properties heavy liquid metals are
often referred to as Low-Prandtl number fluids. Despite their several advantages, these
fluids are not well known as ordinary fluids because experiments carried on them are
very challenging and the corresponding experimental errors very high [1]. A very deep
knowledge of heat transfer and fluid flow properties can be achieved with Direct Numerical
Simulation (DNS). With DNS the profiles of velocity, temperature and other turbulent
quantities can be obtained, but unfortunately this is possible only for flows with very low
Reynolds numbers and in very simple geometries because of the high computational cost
which is required by DNS computations. For these reasons in the last years many projects
have been started with the purpose of developing turbulence models and Computational
Fluid Dynamics (CFD) codes able to correctly predict heat transfer in fully developed
heavy liquid metal turbulent flows with a not too high computational cost.

It has been proved by many studies that, for liquid metal flows, turbulence models
based on a constant turbulent Prandtl number fail to reproduce the available experimental
heat transfer correlations, see for instance [1, 2]. An hypothesis of a constant turbulent
Prandtl number implies that the thermal eddy diffusivity is simply proportional to the
momentum eddy diffusivity and this is commonly implemented in commercial codes. Such
a turbulence model is referred to as Simple Eddy Diffusivity, SED. In Figure 1 on the left
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Figure 1: Asymptotic Nusselt number Nu as a function of the Peclet number Pe for the cylinder channel
heated with constant heat flux (left): numerical results obtained with the SED model implemented in
Fluent with Prt = 4(A), 3(B), 2(C), 1.8(D) and 1.5(E) compared with the empirical Kirillov-Ushakov
correlation (K). Values of the turbulent Prandtl number necessary to match experimental correlations by
Kirillov-Ushakov as a function of the Peclet number Pe (right).
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the asymptotic Nusselt number for a fully developed heavy liquid metal flow in a simple
rod heated with constant heat flux is reported. Results obtained with the SED model
implemented in Fluent with constant turbulent Prandtl number Prt = 4 (A), 3 (B), 2
(C), 1.8 (D) and 1.5 (E) are compared with Kirillov-Ushakov heat transfer correlation for
the same geometrical configuration. This correlation reads [5]

Nu = 4.5 + 0.018Pe0.8 104 ≤ Re ≤ 5 · 106 . (1)

It can be easily seen from this Figure that a SED model with constant turbulent Prandtl
number cannot reproduce the experimental results. If Prt is set as a function of Peclet
number as reported in Figure 1 on the right, then a good match with experimental results
can be obtained. Unfortunately a different function for Prt has to be found for any
different geometry and boundary condition configuration, so it is rather complicated to
correctly predict heat transfer in complex geometries.

A different approach to the problem is to solve the transport equation for the turbulent
heat flux. Algebraic solutions of this equation can be obtained using temperature and
velocity time scales of turbulence [6]. By solving this equation with explicit methods one
may obtain an expression for the thermal eddy diffusivity, defined as the ratio between
the turbulent heat flux and the temperature gradient. In order to obtain the turbulent
heat flux with these methods two additional transport equations must be solved for the
mean square temperature fluctuation κθ and its dissipation. In this work we propose
a four parameter heat transfer turbulence model based on κ-ω Shear-Stress Transport
model and on κθ-ωθ model obtained from the κθ-εθ model proposed in [3, 4]. The use of
κ-ω models results in a much more robust numerical implementation.

In the next section we introduce heat and momentum transport equations which in-
cludes Navier-Stokes equations, κ-ω SST turbulence equations and κθ-ωθ equations for
the turbulent heat transfer model. The definition of the thermal eddy diffusivity with the
model functions used is explained in details. In the third section we report the preliminary
numerical results obtained with this turbulence model for two geometrical configurations,
plane and cylindrical channel. We compare plane results at low Reynolds numbers with
DNS data and cylindrical results with experimental heat transfer correlations. Finally
conclusions are taken over the validity of this model and the improvements obtained with
respect to κθ-εθ model as reported in [3].

2 HEAT AND MOMENTUM TRANSPORT EQUATIONS

Heavy liquid metals can be considered as incompressible fluids in most of the practical
applications where they are employed. The fluid motion and heat transfer are based
on Navier-Stokes and energy balance equations. Reynolds averaging procedure can be
applied to the fundamental transport equations in order to obtain a system for averaged
fields (~u, p, T ). Once the Reynolds averaging procedure is carried on the system one gets
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is
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where ~u and T are the average velocity and temperature fields. By applying Reynolds
averaging procedure two new variables appear which take into account the effect of turbu-
lence: the Reynolds stress tensor ρu′ku

′
i, which is the average product of velocity fluctua-

tions and the turbulent heat flux vector ρCpu′kT
′, which is the average product of velocity

and temperature fluctuations. From Navier-Stokes system we can define the stress tensor
σij and the velocity deformation tensor Sij as

σij = −pδij + µSij Sij =
∂ui
∂xj

+
∂uj
∂xi

, (5)

where µ is the molecular viscosity and p the average static pressure. The system (2-4)
is not close unless the Reynolds stress tensor and the turbulent heat flux are defined.
These unknowns could be obtained as solutions of two transport equations: the Reynolds
stress transport equation and the turbulent heat flux transport equation. However, direct
solutions of these equations are difficult to obtain. Instead, usually one uses the concept
of momentum and thermal eddy diffusivity and the Reynolds stress and the turbulent
heat flux are modeled.

For general flow situations the momentum eddy diffusivity model may be written as

u′iu
′
j = −νt

(
∂ui
∂xj

+
∂uj
∂xi

)
+

2κ

3
δij , (6)

where κ and νt are the turbulent kinetic energy and the momentum eddy diffusivity,
respectively. The last term in (6) assures that the sum of the normal stresses is equal to
2κ, which is required by the definition of κ. The normal stresses act like pressure forces, so
they can be absorbed into the pressure-gradient term and the static pressure is replaced
as an unknown quantity by the modified pressure. One of the most popular model to
compute the turbulent viscosity νt is

νt = Cµ κτu (7)

where Cµ = 0.09 and τu is the local dynamical characteristic time. The local dynamical
characteristic time can be computed directly if one uses κ-ω turbulence models as

τu =
1

ω
. (8)
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In the SST model the local dynamical time is defined as the minimum between the time
usually defined in κ-ω turbulence models and a local time based on the deformation tensor
S in this way [10]:

τu = min

{
1

ω
,

0.31

SF2

}
, (9)

where F2 is a model variable defined in the following. The turbulent kinetic energy κ, its
dissipation ε and the specific dissipation rate ω are defined by

κ =
1

2
u′iu
′
i ε = ν

(
∂u′i
∂xj

)(
∂u′i
∂xj

)
, ω =

ε

Cµ κ
. (10)

The equation for κ can be written in the following form

∂κ

∂t
+ ui

∂κ

∂xi
=

∂

∂xj

[(
ν +

νt
σκ

)
∂κ

∂xj

]
+ Pκ − Cµωκ . (11)

with

Pκ = −u′iu′j
∂ui
∂xj

= νt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

. (12)

In the SST model the production term of κ is limited with a maximum value of ten times
the dissipation term, namely 10Cµωκ. The equation for ω in the SST model is written
as [10]

∂ω

∂t
+ ui

∂ω

∂xi
=

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
+ αS2 − βω2 +

2(1− F1)

ω

∂κ

∂xj

∂ω

∂xj
. (13)

In SST model all the variables σκ, σω, α and β are defined as functions of the variable F1

in order to get a good switch between the κ-ε and the κ-ω models in the regions where
they are more appropriate to use, near wall for κ-ω and center of the channel for κ-ε. The
variable F1 is defined as

F1 = tanh

{{
min

[
max

( √
κ

Cµωd
,

500ν

ωd2

)
,

3.424κ

CDκωd2

]}4
}
, (14)

with d the distance from the wall and

CDκω = max

(
1.712ρ

ω

∂κ

∂xj

∂ω

∂xj
, 10−10

)
. (15)

σκ, σω, α and β are defined basing on F1 as

σκ = 0.85 + (1− F1)

σω = 0.5 + 0.856(1− F1)

α =
5

9
+ 0.44(1− F1)

β =
3

40
+ 0.0828(1− F1) .
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Finally, the variable F2 is used for the calculation of the momentum eddy diffusivity and
is defined as

F2 = tanh

{[
max

(
2
√
κ

Cµωd
,

500ν

ωd2

)]2
}
. (16)

In a similar way as we did for the Reynolds stress tensor we can solve the turbulent
heat flux transport equation with an approximate algebraic solution [6]. For the turbulent
heat flux transport equation we may approximate the solution as

u′iT
′ = −αt

(
∂T

∂xi

)
, (17)

where αt is the thermal eddy diffusivity. In analogy with the dynamical case the thermal
diffusivity αt may be defined as

αt = Cθ κτlθ , (18)

where Cθ = 0.1 = Cµ/0.9 and τlθ is the local thermal characteristic time that takes into
account the corrections near the wall region. In analogy with the definitions in (10) we
introduce the average square temperature fluctuation κθ, its dissipation εθ and its specific
dissipation rate ωθ as

κθ =
1

2
T ′2 , εθ =

ν

Pr

(
∂T ′

∂xi

)(
∂T ′

∂xi

)
ωθ =

εθ
Cµκθ

(19)

and define the characteristic time τθ = 1/ωθ and the ratio R = τθ/τu = ω/ωθ between the
thermal turbulent characteristic time and the dynamical turbulent characteristic time.
The local thermal characteristic time τlθ can be modeled with the introduction of the
proper thermal characteristic time τθ = 1/ωθ as

τlθ =
(
f1θ B1θ + f2θ B2θ

)
, (20)

whit f1θ, B1θ, f2θ and B2θ are appropriate functions. We set

f1θ = (1− exp(−0.0526
Rδ√
Pr

)) (1− exp(−0.0714Rδ)) (21)

B1θ = τu Prt∞ (22)

f2θ B2θ = τu

(
f2aθ

2R

R + Cγ
+ f2bθ

√
2R

Pr

1.3
√
PrR

3/4
t

)
, (23)

where Rt = κ/(Cµνω) and Rδ = (d
√
κ/Rt)/ν with d the distance from the wall and

Cγ = 0.3, Prt∞ = 0.8, f2aθ = f1θ exp(−4 × 10−6R2
t ), f2bθ = f1θ exp(−2.5 × 10−5Rδ

2).
There are three characteristic times in this modeling: the asymptotic dynamical time
τu, the thermal time τθ = Rτu and the mixed time τm, which is defined as 1/τm =
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1/τu + 1/τθ = (R + Cγ)/(2 τuR). The dynamical time τu is simply proportional to the
turbulent viscosity. Near the wall αt/τu is proportional to

√
R while in the asymptotic

region αt is independent of the time ratio. In the intermediate regions αt/τu is proportional
to 2R/(R + Cγ). The model functions fj blend different behaviors in different regions.
For details one can refer to [7, 8, 11, 12, 13, 14, 15] and references therein.

The average square temperature fluctuation κθ is obtained by the following transport
equation [13]

∂κθ
∂t

+ ui
∂κθ
∂xi

=
∂

∂xi

(
α +

αt
σκθ

)
∂κθ
∂xi

+ Pθ − Cµωθκθ , (24)

where

Pθ = −u′iT ′
∂T

∂xi
= αt

∂T

∂xi

∂T

∂xi
. (25)

The equation for ωθ is obtained from the one for εθ [3, 8, 13] with simple algebraic
manipulations

∂ωθ
∂t

+ ui
∂ωθ
∂xi

=
∂

∂xj

[(
α +

αθ
σωθ

)
∂ωθ
∂xj

]
+ (Cp1 − 1)

Pθ
κθ
ωθ − (Cd1 − 1)Cµω

2
θ+

+ Cp2
Pκ
κ
ωθ − Cd2Cµωωθ +

2

κθ

(
α +

αθ
σωθ

)
∂κ

∂xj

∂ωθ
∂xj

, (26)

where Pκ is defined by (12) and Pθ by (25). For heavy liquid metals, with Pr ≈ 0.025,
we have used the coefficients Cd1 = 1.4, Cp1 = 1.1, Cd2 = 0.8, Cp2 = 0.6, σκθ = 1.4
and σωθ = 1.4. If the system (24)-(26) is solved then the time ratio R can be computed
directly as ω/ωθ, the thermal eddy diffusivity can be computed as a function of the time
ratio R and of the other time scales and the energy equation can be closed by substituting
the turbulent heat flux.

Appropriate boundary conditions must be imposed in order to get a solution of the four
parameter turbulence models defined above. We consider only near-wall approach and we
check for each case that we have some mesh points with a non-dimensional distance from
the wall y+ < 1. This can be obtained by refining the mesh near the wall with a multigrid
solver, as it is done in our code. We can enforce the boundary conditions on the wall as

~u = ~0 , κ = 0 , ω =
6ν

Cµd2
, (27)

and for the thermal variables we impose constant heat flux on the wall. A more detailed
discussion on boundary conditions to be used for the κθ-ωθ system can be found in [3], in
this work we impose the following boundary conditions for the thermal quantities:

∂T

∂n
= −1

λ
qw , κθ = 0 , ωθ =

6α

Cµd2
. (28)

The time ratio R on the wall with these boundary conditions is set to the Prandtl number.
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3 NUMERICAL RESULTS

In this section we report the numerical results obtained with the four parameter κ-
ω-κθ-ωθ turbulence model for fully developed turbulent flows in plane and cylindrical
geometries. The Navier-Stokes system is solved by a fully coupled velocity-pressure solver
implemented in an in-house finite element code. We use Taylor-Hood finite elements
for Navier-Stokes system in order to satisfy the Inf-Sup condition and standard quadratic
elements for temperature and κ-ω systems. In our code a multigrid solver is implemented,
which allows multiple refinements of the grid to improve mesh resolution until the solution
convergence has been reached. To use a near-wall approach for the turbulence model we
need to have some mesh points in the viscous sublayer with y+ < 1. For test cases with
low velocity the coarse grid is usually sufficient to obtain this condition while for higher
velocities we need to refine the grid until we satisfy the above condition. The numerical
solution is checked by its L2 norm. Let Th1 and Th2 be two different meshes over the
domain Ω and uh1 and uh2 two corresponding solutions. The convergence criteria is set to

‖uhn−1 − uhn‖L2(Ω)

‖uhn‖L2(Ω)

≤ 10−4 , (29)

where n is the refinement of the n−1 mesh discretization. The (29) assures full convergence
for all the solutions. The physical properties of the liquid metal used in the simulations

Properties Values Units
Density ρ 10340. kg/m3

Dynamic viscosity µ 18.1× 10−4 Pa · s
Thermal conductivity λ 10.72 W/(m ·K)
Specific heat capacity Cp 145.75 J/(kg ·K)

Table 1: Physical properties at the reference temperature.

are reported in Table 1. The Prandtl number of this fluid is very low, namely Pr = 0.025,
so the thermal boundary layer develops deeply from the wall into the channel, while the
dynamical boundary layer is much more thin. The molecular Prandtl number of 0.025
is a reference value for this class of fluids since mercury, lead an Lead-Bismuth-Eutectic
(LBE) have a Prandtl number of 0.01 − 0.03. The geometrical configurations we study
are a plane channel with distance between the two plates L = 0.0605 m and with infinite
dimension in the other directions and a cylindrical pipe with radius r = 0.03025. Since
we want to study a fully developed flow we can make a change of variable in the energy
solution. Indeed, in a fully developed flow with a constant heat flux on the wall, the bulk
and the wall temperature are linear and the slope of the linear profile for unit of vertical
length ∆Tb can be computed by writing an energy balance in the volume as

2Lx Lz qw = Cp ṁ∆Tb Lx , (30)
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where the constant mass flow rate ṁ = 2l ρ v̄ Lz appears. The steady energy equation
can be written as

∂

∂xk
uk T =

∂

∂xk

[
(α + αt)

∂

∂xk
T
]
, (31)

together with appropriate boundary conditions. We may set

∂T

∂n
= −1

λ
qw on the wall , (32)

T = T |i + Lx ∆Tb in the outer section , (33)

where Lx is the axial length computational domain and T |i is the inlet temperature. This
problem has not a unique solution since the integral form of (31), which is basically the
(30), and (33) gives the condition (32) under fully developed flow hypotheses. The solution
becomes unique if one fixes the average value of T or, equivalently, fixes the temperature
in the first point of the wall [16]. In DNS computations the temperature is reported as
a non-dimensional variable. In order to define this non dimensional temperature θ+ one
can expand the temperature solution T in the form

T = Tw0 + x∆Tb − θ , (34)

where ∆Tb and Tw0 are constant quantities and θ is the temperature distribution which
is zero on the walls. After introducing (34) into (31) we obtain

∂

∂xk
uk θ =

∂

∂xk

[
(α + αt)

∂

∂xk
θ
]

+
v qw

l ρ Cp 〈v〉
. (35)

After solving the equation 35 one can normalize θ by dividing for the reference friction
temperature defined as Tτ = q/(vτρCp) to obtain θ+ = θ/Tτ .

Test Case Reynolds Peclet
A 5500 140
B 13500 340
C 23700 600
D 39300 980
E 86500 2200
F 146000 3700
G 194000 4800
H 260000 6500
I 320000 8100

Table 2: Reynolds and Peclet numbers for plane geometry test cases.

In the following we report the numerical results obtained for the plane channel geometry
described above with physical properties as reported in Table 1. Nine simulations have

9
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Figure 2: Non-dimensional velocity v+ as a function of the non-dimensional distance from the wall y+

for the test case A (left) and test case E (right).

been performed with Reynolds and Peclet numbers as reported in Table 2. The first two
test correspond to a friction velocity base Reynolds number of Reτ = 180 and 395 and in
the following we compare these results with DNS computations by Kawamura [9, 17, 18].
In Figure 2 the non-dimensional velocity v+ normalized with the friction velocity vτ is
reported as a function of the non-dimensional distance from the wall y+. On the left it
is reported test case A with Reynolds number Re ≈ 5500 while on the right test case E
with Re ≈ 86500. As one can see, the linear and logarithmic regions are well reproduced
by κ-ω SST model. The comparison with DNS simulations is reported in Figure 3 on
the left. Non-dimensional θ+/Pr as a function of y+ from DNS data for Reτ = 180 is
reported with squares and labeled K180, while for Reτ = 395 it is shown with circles
and labeled K395. The temperature profiles obtained with the four parameter model are
reported with straight continuous lines and are compared with DNS data on the left.
The non-dimensional temperature θ+ is divided by the Prandtl number in order to better
show the correct linear profile of the temperature near the wall. Both DNS data and our
four parameter model correctly predict this linear behavior near the wall. Moreover DNS
data are very similar to our numerical results for the two test cases compared. On the
right one can appreciate the difference in slope of the θ+ profile for test cases with higher
velocities. The non-dimensional root-mean-square of the temperature fluctuation θ+

rms as
computed by the four parameter κ-ω-κθ-ωθ turbulence model is reported in Figure 4 on
the left as a function of y+ for test cases A-G. It can be seen from this Figure that the
thermal boundary layer is very deep inside the channel and that temperature fluctuations
have a quite smooth profile. On the right of the same Figure it is reported the average
turbulent Prandtl number as computed by the four parameter turbulence model. As one
can see the Prt depends from the Peclet number and it decreases as the average velocity
of the fluid increases. For the highest velocity test cases the Prt seems to reach a nearly
constant value around 1.25.

The efficiency of the heat transfer from the heated solid wall to the liquid metal flow
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Figure 3: Non-dimensional temperature θ+/Pr as a function of the non-dimensional distance from the
wall y+ for test cases A-G (right) computed with the four parameter model and compared with DNS
data for Reτ = 180 (K180 square) and for Reτ = 395 (K395 circle) (left).
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Figure 4: On the left non-dimensional root-mean-square temperature fluctuation θ+rms as a function of
the non-dimensional distance from the wall y+. On the right the table with average turbulent Prandtl
number for all the studied test cases.

is described by the Nusselt number. For constant wall heat flux boundary conditions the
Nusselt number is computed as

Nu =
Dh qw
λ∆T

, (36)

where Dh is the hydraulic diameter of the channel and ∆T is the difference between the
wall temperature and the bulk temperature of the fluid. The asymptotic Nusselt number
defines the heat removal of a liquid coolant from a heated wall, so it is the key quantity for
practical heat transfer problems. Numerical results of the Nusselt number from the four
parameter turbulence model are reported in Figure 5 on the left together with the DNS
data for the first two test cases. As one can see the numerical results of the turbulence
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Figure 5: Asymptotic Nusselt number as a function of Peclet number. On the left plane channel
geometry and numerical results from the four parameter turbulence model (circles) compared with DNS
data (squares). On the right the numerical results of the four parameter turbulence model (circles)
compared with the experimental Kirillov correlation (K) in cylindrical geometry.

model and the DNS data are quite similar.
We performed six simulations in cylindrical geometry with Peclet numbers in the range

of 140 to 8400. The numerical results for velocity and temperature profiles are quite
similar to those obtained in plane channel geometry, hence we do not show them here.
We report only the results regarding the Nusselt number in order to compare the heat
transfer predicted by the four parameter turbulence model with the one predicted by
experimental heat transfer correlations which are available for this particular geometry.
Liquid metal flows in cylindrical geometry have been studied experimentally more deeply
because of the simple geometry and because these experimental results could be used
for preliminary consideration on the heat transfer in more complex geometries, such as
triangular or square rod bundles for advanced nuclear applications. A review of the
experimental heat transfer correlations proposed by different authors can be found in
[3]. In this paper we recall only Kirillov correlation (1) valid for liquid metal flows in
cylindrical tube. In Figure 5 on the right the asymptotic Nusselt number computed with
the four parameter turbulence model is compared with Kirillov experimental correlation
for the heat transfer in this geometry. The match can be considered good for all considered
Peclet numbers.

4 CONCLUSIONS

In this work we have tested the performance of a four parameter turbulence model for
heavy liquid metal applications. This model is based on SST κ-ω model by Menter and
on a thermal κθ-ωθ turbulence model derived from the κθ-εθ model described in [3]. Two
geometrical configurations have been studied, the plane channel flow and the cylindrical
pipe flow, with a range of simulated Peclet numbers of approximately 150 to 8000. The
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results obtained with the use of this model are encouraging because a good match is
obtained with DNS data in plane geometry and Kirillov heat transfer correlation is quite
well reproduced. The use of κ-ω models improves dramatically stability and robustness
of the code and convergence is reached more easily with respect to the use of κ-ε systems,
as previously done by the authors in [3, 4]. However more study is needed on this model
to improve the heat transfer integral results and to obtain a more deep understanding of
the physical phenomena involving turbulence modeling with a more accurate comparison
with available DNS data.
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