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Abstract. Parameters for SGS models within the variational multiscale
method for the Stokes equations are determined using two different methods.
Both linear and nonlinear models are considered. Firstly, optimal parame-
ters are found using a goal-oriented model-constrained technique minimising
L2 error. Secondly, parameters are obtained using the variational Germano
identity. Using the goal-oriented results as reference values, it is shown that
the performance of the Germano approach is sensitive to the form of the SGS
model.

1 Introduction

The variational multiscale method of Hughes et al [1] provides a consistent
approach to accounting for the effects of unresolved scales on computed numer-
ical solutions, as well as guidance for the design of models which account for
those scales. For simplified equations, exact unresolved-scale (subgrid-scale)
models can be derived. These have been used as a guide in the design of mod-
els for more complex systems of equations, although this necessarily involves
approximations. Consequently, it can be difficult to precisely estimate the pa-
rameters of complex subgrid scale (SGS) models, yet these can have a strong
influence on the overall performance of the method.

The variational Germano method (VGM), initially developed by Oberai et
al [2] seems to be a promising approach to the estimation of such parameters [3,
4]. Yet in the absence of objective reference data, it can be difficult to assess
how effective the VGM is for the estimation of parameters on coarse meshes,
as competing sources of error are present. Furthermore, it is not always clear
which models are the most suitable for use with the VGM.

In this paper we establish objective reference parameters for the multi-
scale stabilisation of the steady stokes equations using a goal-oriented, model-
constrained optimisation technique. We consider both linear and non-linear
subgrid-scale (SGS) models. The optimisation is defined to produce the min-
imum L2 error for a given problem. We also estimate the same parameters
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using a VGM for nonlinear models based on the Broyden-Fletcher-Goldfarb-
Shanno algorithm. As the VGM results can differ substantially from optimum
values, we investigate the influence of the characteristics of the model on the
effectiveness of the VGM approach.

The paper begins with a brief description of a variational-multiscale de-
scretisation of the Stokes equations. Next the goal-oriented model-constrained
optimisation technique and variational Germano methods are described in de-
tail. Then results are presented for a simplified linear model, the linear model
of Franca et al [5] and the nonlinear model of Taylor et al [6]. In doing so,
the correspondence of the results with the mesh-dependent behaviour of the
VGM residuals is examined.

2 Variational multiscale method

We consider the steady two-dimensional Stokes equations:

−∇ · (2ν∇su) +∇p = f in Ω, (1a)

∇ · u = 0 in Ω, (1b)

u = 0 on δΩ,

∫
Ω

pdΩ = 0 (1c)

where Ω :=]0, 1[×]0, 1[ is the unit square, ν is the viscosity, and the symmetric
velocity gradient is defined as ∇su = 1

2
(∇u +∇uT ). In the variational mul-

tiscale method (VMM), u and p are separated into resolved and unresolved
scales such that u = uh + u′ and p = ph + p′, with the unresolved scales
defined as:

u′ = −τmRm, Rm = ∇ph − f (2)

p′ = −τcRc, Rc = ∇ · u (3)

Defining Vh andQh as spaces of standard bilinear finite-element basis functions
with v ∈ Vh : v = 0 on δΩ and v ∈ Qh :

∫
Ω
dΩ = 0, the variational multiscale

formulation of the problem can be written:

for all w ∈ Vh × V h, q ∈ Qh find uh ∈ Vh × V h, ph ∈ Qh :

(∇sw, 2ν∇suh)− (∇ ·w, ph) + (q,∇ · uh) + (∇ ·w, τc∇ · uh)

+(∇q, τm(∇ph − f)) = (w,f) (4)

Franca[5] presented linear expressions for the stabilisation parameters τm
and τc by writing the Stokes problem as a steady symmetric advective-diffusive
system. Taylor[6] applied nonlinear expressions to a computation of blood flow.
In view of the approximations involved, estimates for the coefficients in these
models are not precise. We therefore introduce modified definitions allowing
the coefficients to be determined by goal-oriented optimisation or the varia-
tional Germano method:

Linear model [5]:

τm =
c1h

2

24
√

2ν
, τc = c2ν (5)
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Nonlinear model [6]:

τm =
c1h

2

24
√

2ν
, τc =

c2h
√
u2 + v2

4
(6)

3 Goal-oriented model-constrained optimisation technique

We pose the problem of finding the model coefficients as an optimisation
problem that seeks to minimise a specific goal function, subject to the underly-
ing governing equations. We choose the L2 norm error of vector V = {u, p}T
as the goal functional, which is written as

min
a,γ
G =

∫
Ω

||V − V̂ ||dΩ, (7)

subject to

(∇sw, 2ν∇suh)− (∇ ·w, ph) + (q,∇ · uh) + (∇ ·w, τc∇ · uh)

+ (∇q, τm(∇ph − f)) = (w,f). (8)

Where V̂ are exact solutions to the Stokes equations, V are solutions obtained
multiscale descretisation with unknown model parameters. a represent the
nodal values of V at the local node for the element. In this investigation, for
which we focus on a 2D Stokes problem, naturally a = {a, b, c}T respectively
correspond V = {u, v, p}T . γ represent parametric coefficients {c1, c2}T inside
τm and τc.

To find the optimal γ we use a procedure similar to [7]. The optimality
conditions for the system (7)-(8) can be derived by defining the Lagrangian
functional

L = G + λ((∇sw, 2ν∇suh)− (∇ ·w, ph) + (q,∇ · uh)

+ (∇ ·w, τc∇ · uh) + (∇q, τm(∇ph − f))− (w,f)), (9)

where λ are a vector of Lagrange multipliers (also knows as adjoint state vari-
ables) that respectively enforce the momentum conservation equations and the
continuity equation. λ = {λ1, λ2, λ3}T so that they meet two components of
the momentum equations and the continuity equation. We define the solution
interpolations within an elements as

u =
N∑
i=1

aiw1i, v =
N∑
i=1

biw2i, p =
N∑
i=1

cipi, w = {w1, w2, q}T . (10)

Expanding the Lagrange functional yields

L = G + λ1[2(w1x, ux) + (w1y, uy) + (w1y, vx)− (w1x, p)

+ (w1x, τc(ux + vy))− (w1, f1)] + λ2[(w2x, uy) + (w2x, vx)

+ 2(w2y, vy)− (w2y, p) + (w2y, τc(ux + vy)]− (w2, f2))

+ λ3[(q, (ux + vy)) + (qx, τm(px − f1)) + (qy, τm(py − f2))], (11)
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where subscripts indicate differentiation with respect to the subscript. The
optimality conditions for the system can be obtained by solving the Euler-
Lagrange equations. The Euler-Lagrange equations are derived by taking
variations of the Lagrange formulation with respect to the state, adjoint, and
coefficient vector variables. Setting the variation of the Lagrange formulation
with respect to Lagrange multiplier vector λ to zero recovers the state equa-
tion (7). Setting the variation of the Lagrange formulation with respect to the
state variables a yields the following adjoint equations:

∂L
∂a

=

∫
Ω

w1(u− û)

||V − V̂ ||
dΩ + λ1 (2(w1x, w1x) + (w1y, w1y) + (w1x, τcw1x))

+ λ2 ((w2x, w1y) + (w2y, τcw1x)) + λ3(q, w1x) = 0 (12a)

∂L
∂b

=

∫
Ω

w2(v − v̂)

||V − V̂ ||
dΩ + λ1 ((w1y, w2x) + (w1x, τcw2y))

+ λ2 ((w2x, w2x) + 2(w2y, w2y) + (w2y, τcw2y)) + λ3(q, w2y) = 0 (12b)

∂L
∂c

=

∫
Ω

q(p− p̂)
||V − V̂ ||

dΩ− λ1(w1x, q)− λ2(w2y, q)

+ λ3 ((qx, τmqx) + (qy, τmqy)) = 0 (12c)

Simplifying the adjoint equation system in a matrix form yields the following
matrix equations 

A11λ1 + A12λ2 + A13λ3 = B1,

A21λ1 + A22λ2 + A23λ3 = B2,

A31λ1 + A32λ2 + A33λ3 = B3.

(13)

Taking the variation of the Lagrange formulation with respect to vector γ
yields the following formulation

∂L
∂c1

=
∂G
∂c1

+ λ3 ((qx, (px − f1)) + (qy, (py − f2)))
∂τm
∂c1

= 0, (14a)

∂L
∂c2

=
∂G
∂c2

+ λ1 (w1x, (ux + vy))
∂τc
∂c2

+ λ2 (w2y, (ux + vy))
∂τc
∂c2

= 0. (14b)

The combined system (4), (12) and (14) represents the first-order Karush-
Kuhn-Tucker optimality conditions for the optimisation problem (7)-(8).

Instead of solving the constrained optimisation problem (7)-(8) directly, a
segregated approach is used in which coefficients in vector γ are updated with-
out any other constraints. in another words, mina,γ G(a,γ) in (7) is replaced
with mina,γ G(a(γ),γ), where the dependence of a on γ is implicit through the
separately updated state equations. The resulting unconstrained optimisation
problem is solved by a Truncated Newton method based on a trust region [8].
Specially, a modified conjugate-gradient (CG) method due to Steihaug [9] is
used to solve the system of equations arising at each Newton step and glob-
alise the optimality conditions by a trust-region scheme. The first term of the
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gradient (14) required by the Steihaug CG is estimated by a finite difference
approximation

∂G
∂γi

=
G(γi + ε)− G(γi)

ε
, (15)

where ε is a small increment.
The procedure used to compute the gradient can be summarised as follows.

Firstly, the state equations are solved to obtain a. Secondly, the adjoint equa-
tions are solved to determine Lagrange multipliers λ. Finally, the computed
a and λ are used to compute the gradient using (14).

In the Steihaug CG algorithm, we approximate the Hessian-vector product
using a Taylor expansion instead of evaluating the complete matrix. To esti-
mate the Hessian-vector product, one needs to repeatedly solve the state and
adjoint equations with a pair of updated τ in which coefficients are added by a
small increment ε multiplied by the direction. Consequently, the optimisation
algorithm requires solutions to a pair of state and adjoint systems at each CG
iteration.

4 Variational Germano method

Here the variational Germano method (VGM) is also used to find the co-
efficients, γ, of the stabilisation parameters appearing in (4). First the VGM
is recast into a least-squares residual form for the Stokes’ equations, based
on the separation of the momentum and continuity equations. Thereafter
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is proposed as a
numerical procedure that can minimise the residuals for arbitrary forms of
the stabilisation parameters, τm and τc. In the VGM a series of N coarse
function spaces, Whi

, are defined with corresponding domain partitions, Chi
,

parametrised by the coarse length scale hi. After first obtaining V h by solving
(4) with an initial guess for γ, the respective coarse-scale solutions, V hi , are
obtained via a projection: V hi = PhiV h. There are a number of choices for
the projector. To obtain parameters comparable to the goal-oriented proce-
dure, here the L2 projector is used. Using V hi the weak form of the stabilised
Stokes’ equations can be reconstructed on each W hi , i.e.:

(∇swhi , 2ν∇suhi)− (∇ ·whi , phi) + (qhi ,∇ · uhi) + (∇ ·whi , τc∇ · uhi)

+ (∇qhi , τm(∇phi − f))− (whi ,f) = 0, i = 1, ..., N (16)

(16) represents an equation for each function in the span of all the whi and
q. However, as γ are taken to be globally constant coefficients, (16) is instead
interpreted globally, i.e. the inner products are taken over all of Ω. This
reduces (16) to one equation per coarse function space.

When τm and/or τc depend nonlinearly on their coefficients, it may not be
possible to obtain an analytical solution for γ from (16). Therefore a numerical
solution procedure would need to be used. In doing so (16) can be assembled
from the individual local contributions of the functions spanning whi .

If the local contributions to (16) are sometimes positive and sometimes
negative (16) may be globally very small. This makes it seem as if the chosen γ
satisfies the Germano relations very well, while the local error of the relations
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can still be very large. In this case, a different formulation of (16) can be
used. Oberai and Wang propose a least-squares formulation of the Germano
relations in [2]. This allows a global Germano residual to be assembled without
concern for the sign of the local contributions. First it is noted that in (16), τm
only appears in the continuity equation and τc only appears in the momentum
equations. It is thus beneficial to use the linear independence of qhi and whi to
separate the continuity and momentum equations into two separate Germano
identities:

(∇swhi , 2ν∇suhi)−(∇·whi , phi)+(∇·whi , τc∇·uhi)−(whi ,f) = 0, i = 1, ..., N
(17)

(qhi ,∇ · uhi) + (∇qhi , τm(∇phi − f)) = 0, i = 1, ..., N (18)

Then let whi =
∑

j φ
i
j and qhi =

∑
j ψ

i
j, where φi

j and ψi
j are the individual

weighting functions in the space Whi . The local residuals of the momentum
and continuity Germano identities are then defined as:

rij,m := (∇sφi
j, 2ν∇suhi)− (∇ · φi

j, p
hi) + (∇ · φi

j, τc∇ · uhi)− (φi
j,f) (19)

rij,c := (ψi
j,∇ · uhi) + (∇ψi

j, τm(∇phi − f)) (20)

The global least-squares residuals can then be constructed by summing the
squares of the local residuals:

Rm :=
N∑
i=1

∑
j

(rij,m)2, Rc :=
N∑
i=1

∑
j

(rij,c)
2 (21)

γ is then obtained by finding values that minimise Rm and Rc. The obtained
γ can be used to compute a new V h which can then be used to repeat the
VGM. Repeating this process gives rise to an iterative solution procedure for
optimising γ.

The BFGS algorithm can be used to minimise Rm and Rc with respect
to γ. Consider the residual R which may represent either Rm, or Rc. R is
minimised when its gradient with respect to γ is zero. The gradient of R can
be approximated using a first order Taylor expansion:

∇R(γ) ≈ ∇R(γ0) +B(γ0)(γ − γ0) = 0 (22)

where B is the Hessian of R with respect to γ. Replacing γ0 by γn and γ by
γn+1, the following iterative procedure can be derived:

γn+1 = γn − αnB
−1
n ∇R(γn) (23)

αn represents a parameter that controls the step length and is obtained, in
this paper, from an inexact line-search. Bn represents an approximation to
the Hessian at step n. Bn is obtained by first assuming that B0 = I, i.e. start
with the identity matrix and then updated to Bn+1 according to the following
procedure:

Bn+1 = Bn +
yny

T
n

yTn sn
− Bnsns

T
nBn

sTnBnsn

sn = αn(γn+1 − γn)

yn = ∇R(γn+1)−∇R(γn) (24)
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To complete the algorithm it is noted that∇R is evaluated using forward finite
differences. The full BFGS algorithm is run until ||∇R||L2 < 1 · 10−7.

5 Difference between VGM and L2 optimality

When using the VGM, with the L2 projector, it is implicitly assumed that
there is a correspondence between the residuals Rm and Rc and the L2 error.
The numerical solution V h implicitly depends on ~c as ~c modifies the PDE
that governs V h, this dependence can be represented by allowing V h to be
a function of ~c. The residuals Rm and Rc both directly depend on ~c and
implicitly on V h(~c). Taking into account the necessary dependencies, the L2

error could be written in the following functional form:

L2 error := FL2(Rm(V h(~c),~c), Rc(V
h(~c),~c)) (25)

The ~c that minimises the L2 error then must satisfy:

dFL2

d~c
=
∂FL2

∂Rm

(
∂Rm

∂V h

∂V h

∂~c
+
∂Rm

∂~c

)
+
∂FL2

∂Rc

(
∂Rc

∂V h

∂V h

∂~c
+
∂Rc

∂~c

)
= 0 (26)

which requires:

• ∂FL2

∂Rm

(
∂Rm

∂V h
∂V h

∂~c
+ ∂Rm

∂~c

)
= −∂FL2

∂Rc

(
∂Rc

∂V h
∂V h

∂~c
+ ∂Rc

∂~c

)
• or, ∂Rm

∂V h
∂V h

∂~c
= −∂Rm

∂~c
and ∂Rc

∂V h
∂V h

∂~c
= −∂Rc

∂~c

• or, ∂Rm

∂V h
∂V h

∂~c
= 0, ∂Rm

∂~c
= 0, ∂Rc

∂V h
∂V h

∂~c
= 0 and ∂Rc

∂~c
= 0

.
The last two points are equivalent to dRm

d~c
= 0, dRc

d~c
= 0, i.e. Rm and Rc must

both be globally minimised for the same ~c. Currently ∂Rm

∂~c
≈ 0 and ∂Rc

∂~c
≈ 0 is

obtained via the VGM, which is a standard way of solving the VGM relations.
However, from (26) it is clear that the current procedure is not sufficient to

find the minimum of the L2 error. ∂Rm

∂V h
∂V h

∂~c
≈ 0 and ∂Rc

∂V h
∂V h

∂~c
≈ 0 is required

as well. This is only possible if there is a single ~c that globally minimises
Rm and Rc. It will be shown in the subsequent sections that for a number
of SGS models used in practice this is not the case. Therefore, in most cases
the ~c obtained from the goal-oriented procedure will not be the same as the ~c
obtained from the VGM.

In spite of not minimising the L2 error, using the VGM may result in a
reduction of the L2 error when compared to using standard values for ~c. The
following sections investigate potential indicators for the suitability of an SGS
model. To achieve a further reduction in L2 error, use would have to be
made of adjoint methods to account for the dependence of FL2 on Rm and
Rc. However, solving the adjoint problem may make the method prohibitively
expensive for practical purposes.
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6 Results and discussion

In this study, (1a) is solved with f defined by manufactured solutions
sin(4πx)sin(4πy) for each variable. The manufactured solutions are used for
the reference solution V̂ while computing the L2 norm error. Here bilinear
elements are used for the both the velocity and pressure spaces. The model
coefficients are found using both the goal-oriented procedure and the VGM.
Since the goal-oriented procedure optimises directly in terms of the desired
error norm, it can be used to define coefficient reference values. The VGM re-
sults, however, are subject to limitations introduced by the approximation of
the subgrid scales. In particular to what extent the SGS model simultaneously
minimises the VGM residuals, and to what extent its optimal coefficients are
independent of mesh size. For the purposes of discussion, we characterise SGS
models for the VGM as follows:

1. Concurrent models: have optimal coefficients that minimise Rm, Rc, and
||Phu− uh|| simultaneously.

2. Scale-invariant models: have optimal coefficients that are independent
of h.

Presumably a concurrent, scale-invariant SGS model would likely realise the
full potential of the VGM.

6.1 τm only models

We first consider the linear model (5) with τc = 0, as well as a similar model
with an h parameterisation of τm:

(τm only, h2) : τm = c1
h2

24
√

2ν
, (τm only, h) : τm = c1

h

24
√

2ν
(27)

Results for c1 versus h obtained using the goal-oriented minimisation of L2

error are shown in figure 1. The goal-oriented procedure converges uniformly
for this case, requiring on average 10 iterations when starting from an initial
guess of c1 = 1.0. Clearly the (τm only, h2) model is scale invariant, while the
(τm only, h) is not. Also shown in figure 1 are the values of c1 obtained from the
VGM, corresponding to minimums in Rc. These differ from their goal-oriented
counterparts, in particular the (τm only, h2) model is now scale-variant.

The VGM results are considered in more detail in figure 2, which shows
the variation of Rm, Rc, the L2 error and ||Phu − uh|| with c1. For plotting
purposes, Rm and Rc are rescaled to be one when c1 = 0. It is evident that
in all cases ||u− uh||L2 ≈ ||Phu− uh||L2 and is minimised for the same value
of c1, which is identical to the value determined by the goal-oriented method.
This shows that for these cases, L2 optimality is equivalent to minimising the
projected error. For both definitions of τm however, the c1 obtained from
minimising Rc does not correspond to the value that minimises either Rm or
||Phu−uh||. Therefore neither τm is concurrent and information of the adjoint
problem is needed to minimise the L2 error. It is further clear that a scale-
invariant SGS model may not retain its scale-invariance when calibrated with
the VGM.
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Figure 2: Plot of Rm, Rc, L2 error and ||Phu− uh|| for different value of c1 for
the (τm only, h2) and (τm only, h) models with h = 1/12 and h = 1/24.

6.2 Models with both τm and τc

We now consider the more conventional linear (5) and nonlinear (6) models
which use both τm and τc. Fig (3) shows contours of the L2 error versus c1

and c2 for the manufactured solution on a uniform mesh of 32× 32 elements.
These are the two-dimensional counterparts of the ||u − uh||L2 curves of fig-
ure 2. Interestingly, the linear model exhibits more complex behaviour than
the nonlinear one. Two minimums are present for the linear model, which also
appears to be less sensitive to the value of c1. Optimal coefficients obtained
with the goal-oriented optimisation are compared to those obtained with the
VGM in figure 4. The coefficients determined by the VGM vary widely in this
range. Only the goal-oriented c1 value is relatively scale-invariant, while the
other coefficients show wide variation but possibly convergence for smaller h.
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Figure 3: L2 error norm versus γ. Left: linear stabilisation parameters, right:
nonlinear stabilisation parameters.
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Figure 4: τ coefficients versus h. Left: linear stabilisation parameters, right:
nonlinear stabilisation parameters.

Figure 5 shows the behaviour of Rc and Rm for the linear model. These
indicate that the model lacks both concurrency and scale invariance in the h
range of greatest interest. A similar conclusion can be obtained by examining
Rc and Rm for the nonlinear model. Thus information about the adjoint
problem is again needed to be able to minimise the L2 error. For the mesh with
size h = 1/24, the values of c1 and c2 obtained for the linear τs are closer to the
minimums of Rc and Rm than those obtained by the goal-oriented procedure.
This is coherent with (26) in that obtaining coefficients that minimise the L2

error may not necessarily require a minimisation of Rc and Rm. Figure 6
shows the consequence of the differences between the VGM and goal-oriented
method. Although the VGM results converge uniformly with mesh size, the
value of the VGM errors can be more than an order of magnitude greater
than those of their goal-oriented counterparts. Note that the goal-oriented
values for the non-linear model are also superior to those suggested in [6].
Furthermore, while neither the linear, or nonlinear τs are scale-invariant or
concurrent, the nonlinear τs produce vastly lower L2 errors than the linear
τs when used with the VGM. This makes it clear that when a model lacks
concurrency, scale-invariance may not be required for it to work well with the
VGM.
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Figure 5: Rc and Rm contours for the linear model
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Figure 6: L2 error of models which use both τm and τc.

7 Conclusions

Parameters of a variational multiscale model for the Stokes equations have
been determined using a goal-oriented procedure and the VGM. In this context
the goal-oriented procedure provides exact reference values, while the VGM
represents an approach which can be used in practice. Differences in the goal
criteria of the goal-oriented method and the VGM, with L2 projection, show
that the VGM will not necessarily produce coefficient values that minimise
the L2 error. The results also demonstrate that the quality of the parameters
predicted by the VGM are strongly affected by the form of the SGS model.
Specifically, when a model lacks concurrency in the minimisation of its VGM
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residuals, or when a model is scale variant, it becomes difficult to realise its
full potential using the VGM. In the absence of concurrency the adjoint prob-
lem relating the L2 error to the VGM residuals must be solved to find SGS
model coefficients that minimise the L2 error. Furthermore a scale-variant
non-concurrent model may still perform well with the VGM. The results also
indicate that it may be possible to assess the suitability of a particular model
for the VGM by examining the variation of the VGM residuals with mesh size.
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